Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates
We present optically tunable metamaterials (MMs) on flexible polymer sheets operating at terahertz (THz) frequencies. The flexible MMs, consisting of electric split-ring resonators (eSRRs) on patterned GaAs patches, were fabricated on a thin polyimide layer using a transfer technique. Optical excita...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on terahertz science and technology 2013-11, Vol.3 (6), p.702-708 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 708 |
---|---|
container_issue | 6 |
container_start_page | 702 |
container_title | IEEE transactions on terahertz science and technology |
container_volume | 3 |
creator | Kebin Fan Xiaoguang Zhao Jingdi Zhang Kun Geng Keiser, George R. Seren, Huseyin R. Metcalfe, Grace D. Wraback, Michael Xin Zhang Averitt, Richard D. |
description | We present optically tunable metamaterials (MMs) on flexible polymer sheets operating at terahertz (THz) frequencies. The flexible MMs, consisting of electric split-ring resonators (eSRRs) on patterned GaAs patches, were fabricated on a thin polyimide layer using a transfer technique. Optical excitation of the GaAs patches modifies the metamaterial response. Our experimental results revealed that, with increasing fluence, a transmission modulation depth of ~ 60% was achieved at the LC resonant frequency of 0.98 THz. In addition, a similar modulation depth was obtained over a broad range from 1.1 to 1.8 THz. Numerical simulations agree with experiment and indicate efficient tuning of the effective permittivity of the MMs. Our flexible tunable device paves the way to create multilayer nonplanar tunable electromagnetic composites for nonlinear and multifunctional applications, including sensing, modulation, and energy harvesting. |
doi_str_mv | 10.1109/TTHZ.2013.2285619 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TTHZ_2013_2285619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6650016</ieee_id><sourcerecordid>10_1109_TTHZ_2013_2285619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-b9437285c3b83ed1f7371062c41207cff9184cd5423070700a5d487947af28ed3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-APGSP5C4s985SrGtUOnBCOIlbDYTG0k_2E3B-uu7oaUzh5nD8w7DQ8gj0AyA5s9FsfjOGAWeMWakgvyGjBhIlXIh1O11Z1_3ZBLCL40lFTdajMh8te9bZ7vumBSHra06TAr0do2-_0_esbcb26NvbReS3TZZtD_rSM46_GsH9ONQhd5HIjyQuyZCOLnMMfmcvRbTRbpczd-mL8vUMSX7tMoF1_FHxyvDsYZGcw1UMSeAUe2aJgcjXC0F41THplbWwuhcaNswgzUfEzjfdX4Xgsem3Pt2Y_2xBFoOMspBRjnIKC8yYubpnGkR8corJSkFxU8qxVqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates</title><source>IEEE Electronic Library (IEL)</source><creator>Kebin Fan ; Xiaoguang Zhao ; Jingdi Zhang ; Kun Geng ; Keiser, George R. ; Seren, Huseyin R. ; Metcalfe, Grace D. ; Wraback, Michael ; Xin Zhang ; Averitt, Richard D.</creator><creatorcontrib>Kebin Fan ; Xiaoguang Zhao ; Jingdi Zhang ; Kun Geng ; Keiser, George R. ; Seren, Huseyin R. ; Metcalfe, Grace D. ; Wraback, Michael ; Xin Zhang ; Averitt, Richard D.</creatorcontrib><description>We present optically tunable metamaterials (MMs) on flexible polymer sheets operating at terahertz (THz) frequencies. The flexible MMs, consisting of electric split-ring resonators (eSRRs) on patterned GaAs patches, were fabricated on a thin polyimide layer using a transfer technique. Optical excitation of the GaAs patches modifies the metamaterial response. Our experimental results revealed that, with increasing fluence, a transmission modulation depth of ~ 60% was achieved at the LC resonant frequency of 0.98 THz. In addition, a similar modulation depth was obtained over a broad range from 1.1 to 1.8 THz. Numerical simulations agree with experiment and indicate efficient tuning of the effective permittivity of the MMs. Our flexible tunable device paves the way to create multilayer nonplanar tunable electromagnetic composites for nonlinear and multifunctional applications, including sensing, modulation, and energy harvesting.</description><identifier>ISSN: 2156-342X</identifier><identifier>EISSN: 2156-3446</identifier><identifier>DOI: 10.1109/TTHZ.2013.2285619</identifier><identifier>CODEN: ITTSBX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Gallium arsenide ; Metamaterial ; Metamaterials ; Optical device fabrication ; Optical imaging ; optical tuning ; Polyimides ; spectroscopy ; Substrates</subject><ispartof>IEEE transactions on terahertz science and technology, 2013-11, Vol.3 (6), p.702-708</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-b9437285c3b83ed1f7371062c41207cff9184cd5423070700a5d487947af28ed3</citedby><cites>FETCH-LOGICAL-c265t-b9437285c3b83ed1f7371062c41207cff9184cd5423070700a5d487947af28ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6650016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6650016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kebin Fan</creatorcontrib><creatorcontrib>Xiaoguang Zhao</creatorcontrib><creatorcontrib>Jingdi Zhang</creatorcontrib><creatorcontrib>Kun Geng</creatorcontrib><creatorcontrib>Keiser, George R.</creatorcontrib><creatorcontrib>Seren, Huseyin R.</creatorcontrib><creatorcontrib>Metcalfe, Grace D.</creatorcontrib><creatorcontrib>Wraback, Michael</creatorcontrib><creatorcontrib>Xin Zhang</creatorcontrib><creatorcontrib>Averitt, Richard D.</creatorcontrib><title>Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates</title><title>IEEE transactions on terahertz science and technology</title><addtitle>TTHZ</addtitle><description>We present optically tunable metamaterials (MMs) on flexible polymer sheets operating at terahertz (THz) frequencies. The flexible MMs, consisting of electric split-ring resonators (eSRRs) on patterned GaAs patches, were fabricated on a thin polyimide layer using a transfer technique. Optical excitation of the GaAs patches modifies the metamaterial response. Our experimental results revealed that, with increasing fluence, a transmission modulation depth of ~ 60% was achieved at the LC resonant frequency of 0.98 THz. In addition, a similar modulation depth was obtained over a broad range from 1.1 to 1.8 THz. Numerical simulations agree with experiment and indicate efficient tuning of the effective permittivity of the MMs. Our flexible tunable device paves the way to create multilayer nonplanar tunable electromagnetic composites for nonlinear and multifunctional applications, including sensing, modulation, and energy harvesting.</description><subject>Gallium arsenide</subject><subject>Metamaterial</subject><subject>Metamaterials</subject><subject>Optical device fabrication</subject><subject>Optical imaging</subject><subject>optical tuning</subject><subject>Polyimides</subject><subject>spectroscopy</subject><subject>Substrates</subject><issn>2156-342X</issn><issn>2156-3446</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsNT-APGSP5C4s985SrGtUOnBCOIlbDYTG0k_2E3B-uu7oaUzh5nD8w7DQ8gj0AyA5s9FsfjOGAWeMWakgvyGjBhIlXIh1O11Z1_3ZBLCL40lFTdajMh8te9bZ7vumBSHra06TAr0do2-_0_esbcb26NvbReS3TZZtD_rSM46_GsH9ONQhd5HIjyQuyZCOLnMMfmcvRbTRbpczd-mL8vUMSX7tMoF1_FHxyvDsYZGcw1UMSeAUe2aJgcjXC0F41THplbWwuhcaNswgzUfEzjfdX4Xgsem3Pt2Y_2xBFoOMspBRjnIKC8yYubpnGkR8corJSkFxU8qxVqg</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Kebin Fan</creator><creator>Xiaoguang Zhao</creator><creator>Jingdi Zhang</creator><creator>Kun Geng</creator><creator>Keiser, George R.</creator><creator>Seren, Huseyin R.</creator><creator>Metcalfe, Grace D.</creator><creator>Wraback, Michael</creator><creator>Xin Zhang</creator><creator>Averitt, Richard D.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201311</creationdate><title>Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates</title><author>Kebin Fan ; Xiaoguang Zhao ; Jingdi Zhang ; Kun Geng ; Keiser, George R. ; Seren, Huseyin R. ; Metcalfe, Grace D. ; Wraback, Michael ; Xin Zhang ; Averitt, Richard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-b9437285c3b83ed1f7371062c41207cff9184cd5423070700a5d487947af28ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Gallium arsenide</topic><topic>Metamaterial</topic><topic>Metamaterials</topic><topic>Optical device fabrication</topic><topic>Optical imaging</topic><topic>optical tuning</topic><topic>Polyimides</topic><topic>spectroscopy</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kebin Fan</creatorcontrib><creatorcontrib>Xiaoguang Zhao</creatorcontrib><creatorcontrib>Jingdi Zhang</creatorcontrib><creatorcontrib>Kun Geng</creatorcontrib><creatorcontrib>Keiser, George R.</creatorcontrib><creatorcontrib>Seren, Huseyin R.</creatorcontrib><creatorcontrib>Metcalfe, Grace D.</creatorcontrib><creatorcontrib>Wraback, Michael</creatorcontrib><creatorcontrib>Xin Zhang</creatorcontrib><creatorcontrib>Averitt, Richard D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on terahertz science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kebin Fan</au><au>Xiaoguang Zhao</au><au>Jingdi Zhang</au><au>Kun Geng</au><au>Keiser, George R.</au><au>Seren, Huseyin R.</au><au>Metcalfe, Grace D.</au><au>Wraback, Michael</au><au>Xin Zhang</au><au>Averitt, Richard D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates</atitle><jtitle>IEEE transactions on terahertz science and technology</jtitle><stitle>TTHZ</stitle><date>2013-11</date><risdate>2013</risdate><volume>3</volume><issue>6</issue><spage>702</spage><epage>708</epage><pages>702-708</pages><issn>2156-342X</issn><eissn>2156-3446</eissn><coden>ITTSBX</coden><abstract>We present optically tunable metamaterials (MMs) on flexible polymer sheets operating at terahertz (THz) frequencies. The flexible MMs, consisting of electric split-ring resonators (eSRRs) on patterned GaAs patches, were fabricated on a thin polyimide layer using a transfer technique. Optical excitation of the GaAs patches modifies the metamaterial response. Our experimental results revealed that, with increasing fluence, a transmission modulation depth of ~ 60% was achieved at the LC resonant frequency of 0.98 THz. In addition, a similar modulation depth was obtained over a broad range from 1.1 to 1.8 THz. Numerical simulations agree with experiment and indicate efficient tuning of the effective permittivity of the MMs. Our flexible tunable device paves the way to create multilayer nonplanar tunable electromagnetic composites for nonlinear and multifunctional applications, including sensing, modulation, and energy harvesting.</abstract><pub>IEEE</pub><doi>10.1109/TTHZ.2013.2285619</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-342X |
ispartof | IEEE transactions on terahertz science and technology, 2013-11, Vol.3 (6), p.702-708 |
issn | 2156-342X 2156-3446 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TTHZ_2013_2285619 |
source | IEEE Electronic Library (IEL) |
subjects | Gallium arsenide Metamaterial Metamaterials Optical device fabrication Optical imaging optical tuning Polyimides spectroscopy Substrates |
title | Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Tunable%20Terahertz%20Metamaterials%20on%20Highly%20Flexible%20Substrates&rft.jtitle=IEEE%20transactions%20on%20terahertz%20science%20and%20technology&rft.au=Kebin%20Fan&rft.date=2013-11&rft.volume=3&rft.issue=6&rft.spage=702&rft.epage=708&rft.pages=702-708&rft.issn=2156-342X&rft.eissn=2156-3446&rft.coden=ITTSBX&rft_id=info:doi/10.1109/TTHZ.2013.2285619&rft_dat=%3Ccrossref_RIE%3E10_1109_TTHZ_2013_2285619%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6650016&rfr_iscdi=true |