Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates

We present optically tunable metamaterials (MMs) on flexible polymer sheets operating at terahertz (THz) frequencies. The flexible MMs, consisting of electric split-ring resonators (eSRRs) on patterned GaAs patches, were fabricated on a thin polyimide layer using a transfer technique. Optical excita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on terahertz science and technology 2013-11, Vol.3 (6), p.702-708
Hauptverfasser: Kebin Fan, Xiaoguang Zhao, Jingdi Zhang, Kun Geng, Keiser, George R., Seren, Huseyin R., Metcalfe, Grace D., Wraback, Michael, Xin Zhang, Averitt, Richard D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 708
container_issue 6
container_start_page 702
container_title IEEE transactions on terahertz science and technology
container_volume 3
creator Kebin Fan
Xiaoguang Zhao
Jingdi Zhang
Kun Geng
Keiser, George R.
Seren, Huseyin R.
Metcalfe, Grace D.
Wraback, Michael
Xin Zhang
Averitt, Richard D.
description We present optically tunable metamaterials (MMs) on flexible polymer sheets operating at terahertz (THz) frequencies. The flexible MMs, consisting of electric split-ring resonators (eSRRs) on patterned GaAs patches, were fabricated on a thin polyimide layer using a transfer technique. Optical excitation of the GaAs patches modifies the metamaterial response. Our experimental results revealed that, with increasing fluence, a transmission modulation depth of ~ 60% was achieved at the LC resonant frequency of 0.98 THz. In addition, a similar modulation depth was obtained over a broad range from 1.1 to 1.8 THz. Numerical simulations agree with experiment and indicate efficient tuning of the effective permittivity of the MMs. Our flexible tunable device paves the way to create multilayer nonplanar tunable electromagnetic composites for nonlinear and multifunctional applications, including sensing, modulation, and energy harvesting.
doi_str_mv 10.1109/TTHZ.2013.2285619
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TTHZ_2013_2285619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6650016</ieee_id><sourcerecordid>10_1109_TTHZ_2013_2285619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-b9437285c3b83ed1f7371062c41207cff9184cd5423070700a5d487947af28ed3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-APGSP5C4s985SrGtUOnBCOIlbDYTG0k_2E3B-uu7oaUzh5nD8w7DQ8gj0AyA5s9FsfjOGAWeMWakgvyGjBhIlXIh1O11Z1_3ZBLCL40lFTdajMh8te9bZ7vumBSHra06TAr0do2-_0_esbcb26NvbReS3TZZtD_rSM46_GsH9ONQhd5HIjyQuyZCOLnMMfmcvRbTRbpczd-mL8vUMSX7tMoF1_FHxyvDsYZGcw1UMSeAUe2aJgcjXC0F41THplbWwuhcaNswgzUfEzjfdX4Xgsem3Pt2Y_2xBFoOMspBRjnIKC8yYubpnGkR8corJSkFxU8qxVqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates</title><source>IEEE Electronic Library (IEL)</source><creator>Kebin Fan ; Xiaoguang Zhao ; Jingdi Zhang ; Kun Geng ; Keiser, George R. ; Seren, Huseyin R. ; Metcalfe, Grace D. ; Wraback, Michael ; Xin Zhang ; Averitt, Richard D.</creator><creatorcontrib>Kebin Fan ; Xiaoguang Zhao ; Jingdi Zhang ; Kun Geng ; Keiser, George R. ; Seren, Huseyin R. ; Metcalfe, Grace D. ; Wraback, Michael ; Xin Zhang ; Averitt, Richard D.</creatorcontrib><description>We present optically tunable metamaterials (MMs) on flexible polymer sheets operating at terahertz (THz) frequencies. The flexible MMs, consisting of electric split-ring resonators (eSRRs) on patterned GaAs patches, were fabricated on a thin polyimide layer using a transfer technique. Optical excitation of the GaAs patches modifies the metamaterial response. Our experimental results revealed that, with increasing fluence, a transmission modulation depth of ~ 60% was achieved at the LC resonant frequency of 0.98 THz. In addition, a similar modulation depth was obtained over a broad range from 1.1 to 1.8 THz. Numerical simulations agree with experiment and indicate efficient tuning of the effective permittivity of the MMs. Our flexible tunable device paves the way to create multilayer nonplanar tunable electromagnetic composites for nonlinear and multifunctional applications, including sensing, modulation, and energy harvesting.</description><identifier>ISSN: 2156-342X</identifier><identifier>EISSN: 2156-3446</identifier><identifier>DOI: 10.1109/TTHZ.2013.2285619</identifier><identifier>CODEN: ITTSBX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Gallium arsenide ; Metamaterial ; Metamaterials ; Optical device fabrication ; Optical imaging ; optical tuning ; Polyimides ; spectroscopy ; Substrates</subject><ispartof>IEEE transactions on terahertz science and technology, 2013-11, Vol.3 (6), p.702-708</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-b9437285c3b83ed1f7371062c41207cff9184cd5423070700a5d487947af28ed3</citedby><cites>FETCH-LOGICAL-c265t-b9437285c3b83ed1f7371062c41207cff9184cd5423070700a5d487947af28ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6650016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6650016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kebin Fan</creatorcontrib><creatorcontrib>Xiaoguang Zhao</creatorcontrib><creatorcontrib>Jingdi Zhang</creatorcontrib><creatorcontrib>Kun Geng</creatorcontrib><creatorcontrib>Keiser, George R.</creatorcontrib><creatorcontrib>Seren, Huseyin R.</creatorcontrib><creatorcontrib>Metcalfe, Grace D.</creatorcontrib><creatorcontrib>Wraback, Michael</creatorcontrib><creatorcontrib>Xin Zhang</creatorcontrib><creatorcontrib>Averitt, Richard D.</creatorcontrib><title>Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates</title><title>IEEE transactions on terahertz science and technology</title><addtitle>TTHZ</addtitle><description>We present optically tunable metamaterials (MMs) on flexible polymer sheets operating at terahertz (THz) frequencies. The flexible MMs, consisting of electric split-ring resonators (eSRRs) on patterned GaAs patches, were fabricated on a thin polyimide layer using a transfer technique. Optical excitation of the GaAs patches modifies the metamaterial response. Our experimental results revealed that, with increasing fluence, a transmission modulation depth of ~ 60% was achieved at the LC resonant frequency of 0.98 THz. In addition, a similar modulation depth was obtained over a broad range from 1.1 to 1.8 THz. Numerical simulations agree with experiment and indicate efficient tuning of the effective permittivity of the MMs. Our flexible tunable device paves the way to create multilayer nonplanar tunable electromagnetic composites for nonlinear and multifunctional applications, including sensing, modulation, and energy harvesting.</description><subject>Gallium arsenide</subject><subject>Metamaterial</subject><subject>Metamaterials</subject><subject>Optical device fabrication</subject><subject>Optical imaging</subject><subject>optical tuning</subject><subject>Polyimides</subject><subject>spectroscopy</subject><subject>Substrates</subject><issn>2156-342X</issn><issn>2156-3446</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsNT-APGSP5C4s985SrGtUOnBCOIlbDYTG0k_2E3B-uu7oaUzh5nD8w7DQ8gj0AyA5s9FsfjOGAWeMWakgvyGjBhIlXIh1O11Z1_3ZBLCL40lFTdajMh8te9bZ7vumBSHra06TAr0do2-_0_esbcb26NvbReS3TZZtD_rSM46_GsH9ONQhd5HIjyQuyZCOLnMMfmcvRbTRbpczd-mL8vUMSX7tMoF1_FHxyvDsYZGcw1UMSeAUe2aJgcjXC0F41THplbWwuhcaNswgzUfEzjfdX4Xgsem3Pt2Y_2xBFoOMspBRjnIKC8yYubpnGkR8corJSkFxU8qxVqg</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Kebin Fan</creator><creator>Xiaoguang Zhao</creator><creator>Jingdi Zhang</creator><creator>Kun Geng</creator><creator>Keiser, George R.</creator><creator>Seren, Huseyin R.</creator><creator>Metcalfe, Grace D.</creator><creator>Wraback, Michael</creator><creator>Xin Zhang</creator><creator>Averitt, Richard D.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201311</creationdate><title>Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates</title><author>Kebin Fan ; Xiaoguang Zhao ; Jingdi Zhang ; Kun Geng ; Keiser, George R. ; Seren, Huseyin R. ; Metcalfe, Grace D. ; Wraback, Michael ; Xin Zhang ; Averitt, Richard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-b9437285c3b83ed1f7371062c41207cff9184cd5423070700a5d487947af28ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Gallium arsenide</topic><topic>Metamaterial</topic><topic>Metamaterials</topic><topic>Optical device fabrication</topic><topic>Optical imaging</topic><topic>optical tuning</topic><topic>Polyimides</topic><topic>spectroscopy</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kebin Fan</creatorcontrib><creatorcontrib>Xiaoguang Zhao</creatorcontrib><creatorcontrib>Jingdi Zhang</creatorcontrib><creatorcontrib>Kun Geng</creatorcontrib><creatorcontrib>Keiser, George R.</creatorcontrib><creatorcontrib>Seren, Huseyin R.</creatorcontrib><creatorcontrib>Metcalfe, Grace D.</creatorcontrib><creatorcontrib>Wraback, Michael</creatorcontrib><creatorcontrib>Xin Zhang</creatorcontrib><creatorcontrib>Averitt, Richard D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on terahertz science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kebin Fan</au><au>Xiaoguang Zhao</au><au>Jingdi Zhang</au><au>Kun Geng</au><au>Keiser, George R.</au><au>Seren, Huseyin R.</au><au>Metcalfe, Grace D.</au><au>Wraback, Michael</au><au>Xin Zhang</au><au>Averitt, Richard D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates</atitle><jtitle>IEEE transactions on terahertz science and technology</jtitle><stitle>TTHZ</stitle><date>2013-11</date><risdate>2013</risdate><volume>3</volume><issue>6</issue><spage>702</spage><epage>708</epage><pages>702-708</pages><issn>2156-342X</issn><eissn>2156-3446</eissn><coden>ITTSBX</coden><abstract>We present optically tunable metamaterials (MMs) on flexible polymer sheets operating at terahertz (THz) frequencies. The flexible MMs, consisting of electric split-ring resonators (eSRRs) on patterned GaAs patches, were fabricated on a thin polyimide layer using a transfer technique. Optical excitation of the GaAs patches modifies the metamaterial response. Our experimental results revealed that, with increasing fluence, a transmission modulation depth of ~ 60% was achieved at the LC resonant frequency of 0.98 THz. In addition, a similar modulation depth was obtained over a broad range from 1.1 to 1.8 THz. Numerical simulations agree with experiment and indicate efficient tuning of the effective permittivity of the MMs. Our flexible tunable device paves the way to create multilayer nonplanar tunable electromagnetic composites for nonlinear and multifunctional applications, including sensing, modulation, and energy harvesting.</abstract><pub>IEEE</pub><doi>10.1109/TTHZ.2013.2285619</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-342X
ispartof IEEE transactions on terahertz science and technology, 2013-11, Vol.3 (6), p.702-708
issn 2156-342X
2156-3446
language eng
recordid cdi_crossref_primary_10_1109_TTHZ_2013_2285619
source IEEE Electronic Library (IEL)
subjects Gallium arsenide
Metamaterial
Metamaterials
Optical device fabrication
Optical imaging
optical tuning
Polyimides
spectroscopy
Substrates
title Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Tunable%20Terahertz%20Metamaterials%20on%20Highly%20Flexible%20Substrates&rft.jtitle=IEEE%20transactions%20on%20terahertz%20science%20and%20technology&rft.au=Kebin%20Fan&rft.date=2013-11&rft.volume=3&rft.issue=6&rft.spage=702&rft.epage=708&rft.pages=702-708&rft.issn=2156-342X&rft.eissn=2156-3446&rft.coden=ITTSBX&rft_id=info:doi/10.1109/TTHZ.2013.2285619&rft_dat=%3Ccrossref_RIE%3E10_1109_TTHZ_2013_2285619%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6650016&rfr_iscdi=true