Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design
For safety and longevity reasons, in subzero temperatures, lithium-ion batteries (LIBs) can only be charged after precommissioning their temperature. Therefore, in such conditions, fast charging depends on fast heating. Recently, the injection of ac currents into LIBs has been reported as a techniqu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on transportation electrification 2019-12, Vol.5 (4), p.925-933 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 933 |
---|---|
container_issue | 4 |
container_start_page | 925 |
container_title | IEEE transactions on transportation electrification |
container_volume | 5 |
creator | Soares, Rudi Djekanovic, Nikolina Wallmark, Oskar Loh, Poh Chiang |
description | For safety and longevity reasons, in subzero temperatures, lithium-ion batteries (LIBs) can only be charged after precommissioning their temperature. Therefore, in such conditions, fast charging depends on fast heating. Recently, the injection of ac currents into LIBs has been reported as a technique with the potential to decrease heating time. This paper proposes a method based on a multi-objective algorithm for dc-dc converter design using transformerless resonant filters. The method enables the dc-dc converters to produce magnified ac current in addition to the dc current. Using the proposed design method, a topological survey of dc-dc converters with magnified ac current capability composed of either half-or full-bridge switch arrangements is carried out. In the presented experimental setup, it is demonstrated that by using an LCL circuit with specific component values and a full-bridge switch arrangement, magnifications of up to 15.7 may be reached. Furthermore, by matching the switching frequency with the frequency where the LCL and the battery resonate, for the same injected ac current, the current flowing in the semiconductors and the switching frequency could be reduced. This allowed a loss reduction in the semiconductors of up to 75%, when compared with an equivalent dc-dc converter enabled to produce a nonmagnified ac current. |
doi_str_mv | 10.1109/TTE.2019.2920328 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TTE_2019_2920328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8727401</ieee_id><sourcerecordid>2339380460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-64cbe9361a277050b96125e8a334dc64d66216befd58c2002f91aefe58623bbf3</originalsourceid><addsrcrecordid>eNpNkU9LxDAQxYsoKOpd8BLw3DV_2rQ9rl1XBUWQ1WtIu5MaXZM1k1X8Dn5oU1bE0wwzv_cG5mXZCaMTxmhzvlhcTjhlzYQ3nApe72QHXAieV1XNd__1-9kx4gullJWibJg8yL5vXIQh6Gi9I96QOz04aywsyXQVIbi0cANpNyGAi8Q6cqFjmn-RucZI2mcdBgiYppgkyWLW5rOWtN59QIjj5hFHg0XQDo0PbxBWgEgeAL3TyXFuxzNkBmgHd5TtGb1COP6th9nj_HLRXue391c37fQ270XFYi6LvoNGSKZ5VdGSdo1kvIRaC1Ese1kspeRMdmCWZd1zSrlpmAYDZS256DojDrN864ufsN50ah3smw5fymurZvZpqnwY1Gt8VrxkUorEn235dfDvG8CoXvwm_WaFKr22ETUtJE0U3VJ98IgBzJ8vo2qMSaWY1BiT-o0pSU63EgsAf3hd8aqgTPwAhW6PAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339380460</pqid></control><display><type>article</type><title>Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design</title><source>IEEE Electronic Library (IEL)</source><creator>Soares, Rudi ; Djekanovic, Nikolina ; Wallmark, Oskar ; Loh, Poh Chiang</creator><creatorcontrib>Soares, Rudi ; Djekanovic, Nikolina ; Wallmark, Oskar ; Loh, Poh Chiang</creatorcontrib><description>For safety and longevity reasons, in subzero temperatures, lithium-ion batteries (LIBs) can only be charged after precommissioning their temperature. Therefore, in such conditions, fast charging depends on fast heating. Recently, the injection of ac currents into LIBs has been reported as a technique with the potential to decrease heating time. This paper proposes a method based on a multi-objective algorithm for dc-dc converter design using transformerless resonant filters. The method enables the dc-dc converters to produce magnified ac current in addition to the dc current. Using the proposed design method, a topological survey of dc-dc converters with magnified ac current capability composed of either half-or full-bridge switch arrangements is carried out. In the presented experimental setup, it is demonstrated that by using an LCL circuit with specific component values and a full-bridge switch arrangement, magnifications of up to 15.7 may be reached. Furthermore, by matching the switching frequency with the frequency where the LCL and the battery resonate, for the same injected ac current, the current flowing in the semiconductors and the switching frequency could be reduced. This allowed a loss reduction in the semiconductors of up to 75%, when compared with an equivalent dc-dc converter enabled to produce a nonmagnified ac current.</description><identifier>ISSN: 2332-7782</identifier><identifier>ISSN: 2577-4212</identifier><identifier>EISSN: 2332-7782</identifier><identifier>DOI: 10.1109/TTE.2019.2920328</identifier><identifier>CODEN: ITTEBP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alternating current ; Batteries ; Battery chargers ; Charging ; Circuits ; DC-(DC/X·AC) converters ; DC-DC power converters ; dc–(dc/X · ac) converters ; Design methodology ; Direct current ; Electric converters ; Electrical Engineering ; Electronic equipment ; Elektro- och systemteknik ; fast charging ; fast heating ; Filter design (mathematics) ; Heating ; Heating systems ; Impedance ; injection of alternating current ; injection of alternating current (ac) ; Lithium ; Lithium-ion batteries ; Multiple objective analysis ; Rechargeable batteries ; Resonant frequency ; Semiconductors ; Switches ; Switching</subject><ispartof>IEEE transactions on transportation electrification, 2019-12, Vol.5 (4), p.925-933</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-64cbe9361a277050b96125e8a334dc64d66216befd58c2002f91aefe58623bbf3</citedby><cites>FETCH-LOGICAL-c371t-64cbe9361a277050b96125e8a334dc64d66216befd58c2002f91aefe58623bbf3</cites><orcidid>0000-0002-9481-7366 ; 0000-0002-6283-7661 ; 0000-0002-1630-9534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8727401$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,552,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8727401$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251663$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Soares, Rudi</creatorcontrib><creatorcontrib>Djekanovic, Nikolina</creatorcontrib><creatorcontrib>Wallmark, Oskar</creatorcontrib><creatorcontrib>Loh, Poh Chiang</creatorcontrib><title>Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design</title><title>IEEE transactions on transportation electrification</title><addtitle>TTE</addtitle><description>For safety and longevity reasons, in subzero temperatures, lithium-ion batteries (LIBs) can only be charged after precommissioning their temperature. Therefore, in such conditions, fast charging depends on fast heating. Recently, the injection of ac currents into LIBs has been reported as a technique with the potential to decrease heating time. This paper proposes a method based on a multi-objective algorithm for dc-dc converter design using transformerless resonant filters. The method enables the dc-dc converters to produce magnified ac current in addition to the dc current. Using the proposed design method, a topological survey of dc-dc converters with magnified ac current capability composed of either half-or full-bridge switch arrangements is carried out. In the presented experimental setup, it is demonstrated that by using an LCL circuit with specific component values and a full-bridge switch arrangement, magnifications of up to 15.7 may be reached. Furthermore, by matching the switching frequency with the frequency where the LCL and the battery resonate, for the same injected ac current, the current flowing in the semiconductors and the switching frequency could be reduced. This allowed a loss reduction in the semiconductors of up to 75%, when compared with an equivalent dc-dc converter enabled to produce a nonmagnified ac current.</description><subject>Algorithms</subject><subject>Alternating current</subject><subject>Batteries</subject><subject>Battery chargers</subject><subject>Charging</subject><subject>Circuits</subject><subject>DC-(DC/X·AC) converters</subject><subject>DC-DC power converters</subject><subject>dc–(dc/X · ac) converters</subject><subject>Design methodology</subject><subject>Direct current</subject><subject>Electric converters</subject><subject>Electrical Engineering</subject><subject>Electronic equipment</subject><subject>Elektro- och systemteknik</subject><subject>fast charging</subject><subject>fast heating</subject><subject>Filter design (mathematics)</subject><subject>Heating</subject><subject>Heating systems</subject><subject>Impedance</subject><subject>injection of alternating current</subject><subject>injection of alternating current (ac)</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Multiple objective analysis</subject><subject>Rechargeable batteries</subject><subject>Resonant frequency</subject><subject>Semiconductors</subject><subject>Switches</subject><subject>Switching</subject><issn>2332-7782</issn><issn>2577-4212</issn><issn>2332-7782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNpNkU9LxDAQxYsoKOpd8BLw3DV_2rQ9rl1XBUWQ1WtIu5MaXZM1k1X8Dn5oU1bE0wwzv_cG5mXZCaMTxmhzvlhcTjhlzYQ3nApe72QHXAieV1XNd__1-9kx4gullJWibJg8yL5vXIQh6Gi9I96QOz04aywsyXQVIbi0cANpNyGAi8Q6cqFjmn-RucZI2mcdBgiYppgkyWLW5rOWtN59QIjj5hFHg0XQDo0PbxBWgEgeAL3TyXFuxzNkBmgHd5TtGb1COP6th9nj_HLRXue391c37fQ270XFYi6LvoNGSKZ5VdGSdo1kvIRaC1Ese1kspeRMdmCWZd1zSrlpmAYDZS256DojDrN864ufsN50ah3smw5fymurZvZpqnwY1Gt8VrxkUorEn235dfDvG8CoXvwm_WaFKr22ETUtJE0U3VJ98IgBzJ8vo2qMSaWY1BiT-o0pSU63EgsAf3hd8aqgTPwAhW6PAw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Soares, Rudi</creator><creator>Djekanovic, Nikolina</creator><creator>Wallmark, Oskar</creator><creator>Loh, Poh Chiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-9481-7366</orcidid><orcidid>https://orcid.org/0000-0002-6283-7661</orcidid><orcidid>https://orcid.org/0000-0002-1630-9534</orcidid></search><sort><creationdate>20191201</creationdate><title>Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design</title><author>Soares, Rudi ; Djekanovic, Nikolina ; Wallmark, Oskar ; Loh, Poh Chiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-64cbe9361a277050b96125e8a334dc64d66216befd58c2002f91aefe58623bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alternating current</topic><topic>Batteries</topic><topic>Battery chargers</topic><topic>Charging</topic><topic>Circuits</topic><topic>DC-(DC/X·AC) converters</topic><topic>DC-DC power converters</topic><topic>dc–(dc/X · ac) converters</topic><topic>Design methodology</topic><topic>Direct current</topic><topic>Electric converters</topic><topic>Electrical Engineering</topic><topic>Electronic equipment</topic><topic>Elektro- och systemteknik</topic><topic>fast charging</topic><topic>fast heating</topic><topic>Filter design (mathematics)</topic><topic>Heating</topic><topic>Heating systems</topic><topic>Impedance</topic><topic>injection of alternating current</topic><topic>injection of alternating current (ac)</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Multiple objective analysis</topic><topic>Rechargeable batteries</topic><topic>Resonant frequency</topic><topic>Semiconductors</topic><topic>Switches</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soares, Rudi</creatorcontrib><creatorcontrib>Djekanovic, Nikolina</creatorcontrib><creatorcontrib>Wallmark, Oskar</creatorcontrib><creatorcontrib>Loh, Poh Chiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on transportation electrification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soares, Rudi</au><au>Djekanovic, Nikolina</au><au>Wallmark, Oskar</au><au>Loh, Poh Chiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design</atitle><jtitle>IEEE transactions on transportation electrification</jtitle><stitle>TTE</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>5</volume><issue>4</issue><spage>925</spage><epage>933</epage><pages>925-933</pages><issn>2332-7782</issn><issn>2577-4212</issn><eissn>2332-7782</eissn><coden>ITTEBP</coden><abstract>For safety and longevity reasons, in subzero temperatures, lithium-ion batteries (LIBs) can only be charged after precommissioning their temperature. Therefore, in such conditions, fast charging depends on fast heating. Recently, the injection of ac currents into LIBs has been reported as a technique with the potential to decrease heating time. This paper proposes a method based on a multi-objective algorithm for dc-dc converter design using transformerless resonant filters. The method enables the dc-dc converters to produce magnified ac current in addition to the dc current. Using the proposed design method, a topological survey of dc-dc converters with magnified ac current capability composed of either half-or full-bridge switch arrangements is carried out. In the presented experimental setup, it is demonstrated that by using an LCL circuit with specific component values and a full-bridge switch arrangement, magnifications of up to 15.7 may be reached. Furthermore, by matching the switching frequency with the frequency where the LCL and the battery resonate, for the same injected ac current, the current flowing in the semiconductors and the switching frequency could be reduced. This allowed a loss reduction in the semiconductors of up to 75%, when compared with an equivalent dc-dc converter enabled to produce a nonmagnified ac current.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TTE.2019.2920328</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9481-7366</orcidid><orcidid>https://orcid.org/0000-0002-6283-7661</orcidid><orcidid>https://orcid.org/0000-0002-1630-9534</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2332-7782 |
ispartof | IEEE transactions on transportation electrification, 2019-12, Vol.5 (4), p.925-933 |
issn | 2332-7782 2577-4212 2332-7782 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TTE_2019_2920328 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Alternating current Batteries Battery chargers Charging Circuits DC-(DC/X·AC) converters DC-DC power converters dc–(dc/X · ac) converters Design methodology Direct current Electric converters Electrical Engineering Electronic equipment Elektro- och systemteknik fast charging fast heating Filter design (mathematics) Heating Heating systems Impedance injection of alternating current injection of alternating current (ac) Lithium Lithium-ion batteries Multiple objective analysis Rechargeable batteries Resonant frequency Semiconductors Switches Switching |
title | Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Magnified%20Alternating%20Current%20in%20Battery%20Fast%20Chargers%20Based%20on%20DC-DC%20Converters%20Using%20Transformerless%20Resonant%20Filter%20Design&rft.jtitle=IEEE%20transactions%20on%20transportation%20electrification&rft.au=Soares,%20Rudi&rft.date=2019-12-01&rft.volume=5&rft.issue=4&rft.spage=925&rft.epage=933&rft.pages=925-933&rft.issn=2332-7782&rft.eissn=2332-7782&rft.coden=ITTEBP&rft_id=info:doi/10.1109/TTE.2019.2920328&rft_dat=%3Cproquest_RIE%3E2339380460%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339380460&rft_id=info:pmid/&rft_ieee_id=8727401&rfr_iscdi=true |