Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design

For safety and longevity reasons, in subzero temperatures, lithium-ion batteries (LIBs) can only be charged after precommissioning their temperature. Therefore, in such conditions, fast charging depends on fast heating. Recently, the injection of ac currents into LIBs has been reported as a techniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on transportation electrification 2019-12, Vol.5 (4), p.925-933
Hauptverfasser: Soares, Rudi, Djekanovic, Nikolina, Wallmark, Oskar, Loh, Poh Chiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 933
container_issue 4
container_start_page 925
container_title IEEE transactions on transportation electrification
container_volume 5
creator Soares, Rudi
Djekanovic, Nikolina
Wallmark, Oskar
Loh, Poh Chiang
description For safety and longevity reasons, in subzero temperatures, lithium-ion batteries (LIBs) can only be charged after precommissioning their temperature. Therefore, in such conditions, fast charging depends on fast heating. Recently, the injection of ac currents into LIBs has been reported as a technique with the potential to decrease heating time. This paper proposes a method based on a multi-objective algorithm for dc-dc converter design using transformerless resonant filters. The method enables the dc-dc converters to produce magnified ac current in addition to the dc current. Using the proposed design method, a topological survey of dc-dc converters with magnified ac current capability composed of either half-or full-bridge switch arrangements is carried out. In the presented experimental setup, it is demonstrated that by using an LCL circuit with specific component values and a full-bridge switch arrangement, magnifications of up to 15.7 may be reached. Furthermore, by matching the switching frequency with the frequency where the LCL and the battery resonate, for the same injected ac current, the current flowing in the semiconductors and the switching frequency could be reduced. This allowed a loss reduction in the semiconductors of up to 75%, when compared with an equivalent dc-dc converter enabled to produce a nonmagnified ac current.
doi_str_mv 10.1109/TTE.2019.2920328
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TTE_2019_2920328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8727401</ieee_id><sourcerecordid>2339380460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-64cbe9361a277050b96125e8a334dc64d66216befd58c2002f91aefe58623bbf3</originalsourceid><addsrcrecordid>eNpNkU9LxDAQxYsoKOpd8BLw3DV_2rQ9rl1XBUWQ1WtIu5MaXZM1k1X8Dn5oU1bE0wwzv_cG5mXZCaMTxmhzvlhcTjhlzYQ3nApe72QHXAieV1XNd__1-9kx4gullJWibJg8yL5vXIQh6Gi9I96QOz04aywsyXQVIbi0cANpNyGAi8Q6cqFjmn-RucZI2mcdBgiYppgkyWLW5rOWtN59QIjj5hFHg0XQDo0PbxBWgEgeAL3TyXFuxzNkBmgHd5TtGb1COP6th9nj_HLRXue391c37fQ270XFYi6LvoNGSKZ5VdGSdo1kvIRaC1Ese1kspeRMdmCWZd1zSrlpmAYDZS256DojDrN864ufsN50ah3smw5fymurZvZpqnwY1Gt8VrxkUorEn235dfDvG8CoXvwm_WaFKr22ETUtJE0U3VJ98IgBzJ8vo2qMSaWY1BiT-o0pSU63EgsAf3hd8aqgTPwAhW6PAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339380460</pqid></control><display><type>article</type><title>Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design</title><source>IEEE Electronic Library (IEL)</source><creator>Soares, Rudi ; Djekanovic, Nikolina ; Wallmark, Oskar ; Loh, Poh Chiang</creator><creatorcontrib>Soares, Rudi ; Djekanovic, Nikolina ; Wallmark, Oskar ; Loh, Poh Chiang</creatorcontrib><description>For safety and longevity reasons, in subzero temperatures, lithium-ion batteries (LIBs) can only be charged after precommissioning their temperature. Therefore, in such conditions, fast charging depends on fast heating. Recently, the injection of ac currents into LIBs has been reported as a technique with the potential to decrease heating time. This paper proposes a method based on a multi-objective algorithm for dc-dc converter design using transformerless resonant filters. The method enables the dc-dc converters to produce magnified ac current in addition to the dc current. Using the proposed design method, a topological survey of dc-dc converters with magnified ac current capability composed of either half-or full-bridge switch arrangements is carried out. In the presented experimental setup, it is demonstrated that by using an LCL circuit with specific component values and a full-bridge switch arrangement, magnifications of up to 15.7 may be reached. Furthermore, by matching the switching frequency with the frequency where the LCL and the battery resonate, for the same injected ac current, the current flowing in the semiconductors and the switching frequency could be reduced. This allowed a loss reduction in the semiconductors of up to 75%, when compared with an equivalent dc-dc converter enabled to produce a nonmagnified ac current.</description><identifier>ISSN: 2332-7782</identifier><identifier>ISSN: 2577-4212</identifier><identifier>EISSN: 2332-7782</identifier><identifier>DOI: 10.1109/TTE.2019.2920328</identifier><identifier>CODEN: ITTEBP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alternating current ; Batteries ; Battery chargers ; Charging ; Circuits ; DC-(DC/X·AC) converters ; DC-DC power converters ; dc–(dc/X · ac) converters ; Design methodology ; Direct current ; Electric converters ; Electrical Engineering ; Electronic equipment ; Elektro- och systemteknik ; fast charging ; fast heating ; Filter design (mathematics) ; Heating ; Heating systems ; Impedance ; injection of alternating current ; injection of alternating current (ac) ; Lithium ; Lithium-ion batteries ; Multiple objective analysis ; Rechargeable batteries ; Resonant frequency ; Semiconductors ; Switches ; Switching</subject><ispartof>IEEE transactions on transportation electrification, 2019-12, Vol.5 (4), p.925-933</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-64cbe9361a277050b96125e8a334dc64d66216befd58c2002f91aefe58623bbf3</citedby><cites>FETCH-LOGICAL-c371t-64cbe9361a277050b96125e8a334dc64d66216befd58c2002f91aefe58623bbf3</cites><orcidid>0000-0002-9481-7366 ; 0000-0002-6283-7661 ; 0000-0002-1630-9534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8727401$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,552,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8727401$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251663$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Soares, Rudi</creatorcontrib><creatorcontrib>Djekanovic, Nikolina</creatorcontrib><creatorcontrib>Wallmark, Oskar</creatorcontrib><creatorcontrib>Loh, Poh Chiang</creatorcontrib><title>Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design</title><title>IEEE transactions on transportation electrification</title><addtitle>TTE</addtitle><description>For safety and longevity reasons, in subzero temperatures, lithium-ion batteries (LIBs) can only be charged after precommissioning their temperature. Therefore, in such conditions, fast charging depends on fast heating. Recently, the injection of ac currents into LIBs has been reported as a technique with the potential to decrease heating time. This paper proposes a method based on a multi-objective algorithm for dc-dc converter design using transformerless resonant filters. The method enables the dc-dc converters to produce magnified ac current in addition to the dc current. Using the proposed design method, a topological survey of dc-dc converters with magnified ac current capability composed of either half-or full-bridge switch arrangements is carried out. In the presented experimental setup, it is demonstrated that by using an LCL circuit with specific component values and a full-bridge switch arrangement, magnifications of up to 15.7 may be reached. Furthermore, by matching the switching frequency with the frequency where the LCL and the battery resonate, for the same injected ac current, the current flowing in the semiconductors and the switching frequency could be reduced. This allowed a loss reduction in the semiconductors of up to 75%, when compared with an equivalent dc-dc converter enabled to produce a nonmagnified ac current.</description><subject>Algorithms</subject><subject>Alternating current</subject><subject>Batteries</subject><subject>Battery chargers</subject><subject>Charging</subject><subject>Circuits</subject><subject>DC-(DC/X·AC) converters</subject><subject>DC-DC power converters</subject><subject>dc–(dc/X · ac) converters</subject><subject>Design methodology</subject><subject>Direct current</subject><subject>Electric converters</subject><subject>Electrical Engineering</subject><subject>Electronic equipment</subject><subject>Elektro- och systemteknik</subject><subject>fast charging</subject><subject>fast heating</subject><subject>Filter design (mathematics)</subject><subject>Heating</subject><subject>Heating systems</subject><subject>Impedance</subject><subject>injection of alternating current</subject><subject>injection of alternating current (ac)</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Multiple objective analysis</subject><subject>Rechargeable batteries</subject><subject>Resonant frequency</subject><subject>Semiconductors</subject><subject>Switches</subject><subject>Switching</subject><issn>2332-7782</issn><issn>2577-4212</issn><issn>2332-7782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNpNkU9LxDAQxYsoKOpd8BLw3DV_2rQ9rl1XBUWQ1WtIu5MaXZM1k1X8Dn5oU1bE0wwzv_cG5mXZCaMTxmhzvlhcTjhlzYQ3nApe72QHXAieV1XNd__1-9kx4gullJWibJg8yL5vXIQh6Gi9I96QOz04aywsyXQVIbi0cANpNyGAi8Q6cqFjmn-RucZI2mcdBgiYppgkyWLW5rOWtN59QIjj5hFHg0XQDo0PbxBWgEgeAL3TyXFuxzNkBmgHd5TtGb1COP6th9nj_HLRXue391c37fQ270XFYi6LvoNGSKZ5VdGSdo1kvIRaC1Ese1kspeRMdmCWZd1zSrlpmAYDZS256DojDrN864ufsN50ah3smw5fymurZvZpqnwY1Gt8VrxkUorEn235dfDvG8CoXvwm_WaFKr22ETUtJE0U3VJ98IgBzJ8vo2qMSaWY1BiT-o0pSU63EgsAf3hd8aqgTPwAhW6PAw</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Soares, Rudi</creator><creator>Djekanovic, Nikolina</creator><creator>Wallmark, Oskar</creator><creator>Loh, Poh Chiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AFDQA</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D8V</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-9481-7366</orcidid><orcidid>https://orcid.org/0000-0002-6283-7661</orcidid><orcidid>https://orcid.org/0000-0002-1630-9534</orcidid></search><sort><creationdate>20191201</creationdate><title>Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design</title><author>Soares, Rudi ; Djekanovic, Nikolina ; Wallmark, Oskar ; Loh, Poh Chiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-64cbe9361a277050b96125e8a334dc64d66216befd58c2002f91aefe58623bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alternating current</topic><topic>Batteries</topic><topic>Battery chargers</topic><topic>Charging</topic><topic>Circuits</topic><topic>DC-(DC/X·AC) converters</topic><topic>DC-DC power converters</topic><topic>dc–(dc/X · ac) converters</topic><topic>Design methodology</topic><topic>Direct current</topic><topic>Electric converters</topic><topic>Electrical Engineering</topic><topic>Electronic equipment</topic><topic>Elektro- och systemteknik</topic><topic>fast charging</topic><topic>fast heating</topic><topic>Filter design (mathematics)</topic><topic>Heating</topic><topic>Heating systems</topic><topic>Impedance</topic><topic>injection of alternating current</topic><topic>injection of alternating current (ac)</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Multiple objective analysis</topic><topic>Rechargeable batteries</topic><topic>Resonant frequency</topic><topic>Semiconductors</topic><topic>Switches</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soares, Rudi</creatorcontrib><creatorcontrib>Djekanovic, Nikolina</creatorcontrib><creatorcontrib>Wallmark, Oskar</creatorcontrib><creatorcontrib>Loh, Poh Chiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Kungliga Tekniska Högskolan full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SwePub Articles full text</collection><jtitle>IEEE transactions on transportation electrification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soares, Rudi</au><au>Djekanovic, Nikolina</au><au>Wallmark, Oskar</au><au>Loh, Poh Chiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design</atitle><jtitle>IEEE transactions on transportation electrification</jtitle><stitle>TTE</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>5</volume><issue>4</issue><spage>925</spage><epage>933</epage><pages>925-933</pages><issn>2332-7782</issn><issn>2577-4212</issn><eissn>2332-7782</eissn><coden>ITTEBP</coden><abstract>For safety and longevity reasons, in subzero temperatures, lithium-ion batteries (LIBs) can only be charged after precommissioning their temperature. Therefore, in such conditions, fast charging depends on fast heating. Recently, the injection of ac currents into LIBs has been reported as a technique with the potential to decrease heating time. This paper proposes a method based on a multi-objective algorithm for dc-dc converter design using transformerless resonant filters. The method enables the dc-dc converters to produce magnified ac current in addition to the dc current. Using the proposed design method, a topological survey of dc-dc converters with magnified ac current capability composed of either half-or full-bridge switch arrangements is carried out. In the presented experimental setup, it is demonstrated that by using an LCL circuit with specific component values and a full-bridge switch arrangement, magnifications of up to 15.7 may be reached. Furthermore, by matching the switching frequency with the frequency where the LCL and the battery resonate, for the same injected ac current, the current flowing in the semiconductors and the switching frequency could be reduced. This allowed a loss reduction in the semiconductors of up to 75%, when compared with an equivalent dc-dc converter enabled to produce a nonmagnified ac current.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TTE.2019.2920328</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9481-7366</orcidid><orcidid>https://orcid.org/0000-0002-6283-7661</orcidid><orcidid>https://orcid.org/0000-0002-1630-9534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2332-7782
ispartof IEEE transactions on transportation electrification, 2019-12, Vol.5 (4), p.925-933
issn 2332-7782
2577-4212
2332-7782
language eng
recordid cdi_crossref_primary_10_1109_TTE_2019_2920328
source IEEE Electronic Library (IEL)
subjects Algorithms
Alternating current
Batteries
Battery chargers
Charging
Circuits
DC-(DC/X·AC) converters
DC-DC power converters
dc–(dc/X · ac) converters
Design methodology
Direct current
Electric converters
Electrical Engineering
Electronic equipment
Elektro- och systemteknik
fast charging
fast heating
Filter design (mathematics)
Heating
Heating systems
Impedance
injection of alternating current
injection of alternating current (ac)
Lithium
Lithium-ion batteries
Multiple objective analysis
Rechargeable batteries
Resonant frequency
Semiconductors
Switches
Switching
title Integration of Magnified Alternating Current in Battery Fast Chargers Based on DC-DC Converters Using Transformerless Resonant Filter Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Magnified%20Alternating%20Current%20in%20Battery%20Fast%20Chargers%20Based%20on%20DC-DC%20Converters%20Using%20Transformerless%20Resonant%20Filter%20Design&rft.jtitle=IEEE%20transactions%20on%20transportation%20electrification&rft.au=Soares,%20Rudi&rft.date=2019-12-01&rft.volume=5&rft.issue=4&rft.spage=925&rft.epage=933&rft.pages=925-933&rft.issn=2332-7782&rft.eissn=2332-7782&rft.coden=ITTEBP&rft_id=info:doi/10.1109/TTE.2019.2920328&rft_dat=%3Cproquest_RIE%3E2339380460%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2339380460&rft_id=info:pmid/&rft_ieee_id=8727401&rfr_iscdi=true