Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach

File carving is a powerful technique for both digital forensics investigations and data recovery. It offers the flexibility to recover data stored on digital media independent of the underlying file system. Thus, it can be used in the cases where we need to recover deleted files or when we have a co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable computing 2021-01, Vol.6 (1), p.131-143
Hauptverfasser: Alghafli, Khawla, Yeun, Chan Yeob, Damiani, Ernesto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143
container_issue 1
container_start_page 131
container_title IEEE transactions on sustainable computing
container_volume 6
creator Alghafli, Khawla
Yeun, Chan Yeob
Damiani, Ernesto
description File carving is a powerful technique for both digital forensics investigations and data recovery. It offers the flexibility to recover data stored on digital media independent of the underlying file system. Thus, it can be used in the cases where we need to recover deleted files or when we have a corrupted, overwritten, or unknown file system. In this paper, we present a novel video file carving (VidCarve) framework to recover and reassemble fragmented video files into playable video files. VidCarve consists of four main components: identification and recovery, weight assignment, reassembly, and file construction. This paper focuses on the weight assignment and reassembly processes where the codec specification parameters of carved fragments were overwritten. We propose several weight assignment techniques to estimate the probability of adjacency between video fragments. Based on these weights, the reassembly algorithm recovers the video files by constructing their correct sequences. We provide experimental results for the proposed techniques of weight assignment and reassembly. We claim that the overall accuracy rate can produce forensically sound evidence and play a critical role in the process of digital evidence recovery in many criminal cases.
doi_str_mv 10.1109/TSUSC.2019.2914192
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSUSC_2019_2914192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8703058</ieee_id><sourcerecordid>2498872957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-76a1b2050f0bf33cf25921183ad3bab237265475ae758e944f238dda6226d9063</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIVKU_ABdLnFPsdRLb3KqIl1QEUlOulpOs25Q2KXYK6t-TtBXitKvdmZ2dCYJrRseMUXWXzeazdAyUqTEoFjEFZ8EAuBAhFxLO__WXwcj7FaWUCRErYIPgM8NiWVdfO_TENo68ovE7V9UL0i6RvLsmN3m1rto9aSyZlCtTYF3sSY7tD2JNUuO-sSQfVYkNeXRmscG69fck68jd8LAmk-3WNaZYXgUX1qw9jk51GMwfH7L0OZy-Pb2kk2lYAMRtKBLDcqAxtTS3nBcW-leZ5Kbk3TedGUjiSMQGRSxRRZEFLsvSJABJqWjCh8Ht8W4n2xtr9arZubqT1BApKQWoWHQoOKIK13jv0OqtqzbG7TWjus9VH3LVfa76lGtHujmSKkT8I0hBOY0l_wUTf3Oh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498872957</pqid></control><display><type>article</type><title>Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Alghafli, Khawla ; Yeun, Chan Yeob ; Damiani, Ernesto</creator><creatorcontrib>Alghafli, Khawla ; Yeun, Chan Yeob ; Damiani, Ernesto</creatorcontrib><description>File carving is a powerful technique for both digital forensics investigations and data recovery. It offers the flexibility to recover data stored on digital media independent of the underlying file system. Thus, it can be used in the cases where we need to recover deleted files or when we have a corrupted, overwritten, or unknown file system. In this paper, we present a novel video file carving (VidCarve) framework to recover and reassemble fragmented video files into playable video files. VidCarve consists of four main components: identification and recovery, weight assignment, reassembly, and file construction. This paper focuses on the weight assignment and reassembly processes where the codec specification parameters of carved fragments were overwritten. We propose several weight assignment techniques to estimate the probability of adjacency between video fragments. Based on these weights, the reassembly algorithm recovers the video files by constructing their correct sequences. We provide experimental results for the proposed techniques of weight assignment and reassembly. We claim that the overall accuracy rate can produce forensically sound evidence and play a critical role in the process of digital evidence recovery in many criminal cases.</description><identifier>ISSN: 2377-3782</identifier><identifier>EISSN: 2377-3782</identifier><identifier>EISSN: 2377-3790</identifier><identifier>DOI: 10.1109/TSUSC.2019.2914192</identifier><identifier>CODEN: ITSCBE</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Codec ; Codecs ; Containers ; Crime ; Data recovery ; digital evidence ; Digital forensics ; Digital media ; file carving ; Forensic computing ; Forensics ; fragment reassembly ; fragmented video files ; Fragments ; ISO ; Media ; Metadata ; Streaming media ; Video data ; Weight</subject><ispartof>IEEE transactions on sustainable computing, 2021-01, Vol.6 (1), p.131-143</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-76a1b2050f0bf33cf25921183ad3bab237265475ae758e944f238dda6226d9063</citedby><cites>FETCH-LOGICAL-c225t-76a1b2050f0bf33cf25921183ad3bab237265475ae758e944f238dda6226d9063</cites><orcidid>0000-0003-1050-263X ; 0000-0002-9557-6496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8703058$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8703058$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alghafli, Khawla</creatorcontrib><creatorcontrib>Yeun, Chan Yeob</creatorcontrib><creatorcontrib>Damiani, Ernesto</creatorcontrib><title>Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach</title><title>IEEE transactions on sustainable computing</title><addtitle>TSUSC</addtitle><description>File carving is a powerful technique for both digital forensics investigations and data recovery. It offers the flexibility to recover data stored on digital media independent of the underlying file system. Thus, it can be used in the cases where we need to recover deleted files or when we have a corrupted, overwritten, or unknown file system. In this paper, we present a novel video file carving (VidCarve) framework to recover and reassemble fragmented video files into playable video files. VidCarve consists of four main components: identification and recovery, weight assignment, reassembly, and file construction. This paper focuses on the weight assignment and reassembly processes where the codec specification parameters of carved fragments were overwritten. We propose several weight assignment techniques to estimate the probability of adjacency between video fragments. Based on these weights, the reassembly algorithm recovers the video files by constructing their correct sequences. We provide experimental results for the proposed techniques of weight assignment and reassembly. We claim that the overall accuracy rate can produce forensically sound evidence and play a critical role in the process of digital evidence recovery in many criminal cases.</description><subject>Algorithms</subject><subject>Codec</subject><subject>Codecs</subject><subject>Containers</subject><subject>Crime</subject><subject>Data recovery</subject><subject>digital evidence</subject><subject>Digital forensics</subject><subject>Digital media</subject><subject>file carving</subject><subject>Forensic computing</subject><subject>Forensics</subject><subject>fragment reassembly</subject><subject>fragmented video files</subject><subject>Fragments</subject><subject>ISO</subject><subject>Media</subject><subject>Metadata</subject><subject>Streaming media</subject><subject>Video data</subject><subject>Weight</subject><issn>2377-3782</issn><issn>2377-3782</issn><issn>2377-3790</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQjBBIVKU_ABdLnFPsdRLb3KqIl1QEUlOulpOs25Q2KXYK6t-TtBXitKvdmZ2dCYJrRseMUXWXzeazdAyUqTEoFjEFZ8EAuBAhFxLO__WXwcj7FaWUCRErYIPgM8NiWVdfO_TENo68ovE7V9UL0i6RvLsmN3m1rto9aSyZlCtTYF3sSY7tD2JNUuO-sSQfVYkNeXRmscG69fck68jd8LAmk-3WNaZYXgUX1qw9jk51GMwfH7L0OZy-Pb2kk2lYAMRtKBLDcqAxtTS3nBcW-leZ5Kbk3TedGUjiSMQGRSxRRZEFLsvSJABJqWjCh8Ht8W4n2xtr9arZubqT1BApKQWoWHQoOKIK13jv0OqtqzbG7TWjus9VH3LVfa76lGtHujmSKkT8I0hBOY0l_wUTf3Oh</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Alghafli, Khawla</creator><creator>Yeun, Chan Yeob</creator><creator>Damiani, Ernesto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1050-263X</orcidid><orcidid>https://orcid.org/0000-0002-9557-6496</orcidid></search><sort><creationdate>202101</creationdate><title>Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach</title><author>Alghafli, Khawla ; Yeun, Chan Yeob ; Damiani, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-76a1b2050f0bf33cf25921183ad3bab237265475ae758e944f238dda6226d9063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Codec</topic><topic>Codecs</topic><topic>Containers</topic><topic>Crime</topic><topic>Data recovery</topic><topic>digital evidence</topic><topic>Digital forensics</topic><topic>Digital media</topic><topic>file carving</topic><topic>Forensic computing</topic><topic>Forensics</topic><topic>fragment reassembly</topic><topic>fragmented video files</topic><topic>Fragments</topic><topic>ISO</topic><topic>Media</topic><topic>Metadata</topic><topic>Streaming media</topic><topic>Video data</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alghafli, Khawla</creatorcontrib><creatorcontrib>Yeun, Chan Yeob</creatorcontrib><creatorcontrib>Damiani, Ernesto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on sustainable computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alghafli, Khawla</au><au>Yeun, Chan Yeob</au><au>Damiani, Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach</atitle><jtitle>IEEE transactions on sustainable computing</jtitle><stitle>TSUSC</stitle><date>2021-01</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><spage>131</spage><epage>143</epage><pages>131-143</pages><issn>2377-3782</issn><eissn>2377-3782</eissn><eissn>2377-3790</eissn><coden>ITSCBE</coden><abstract>File carving is a powerful technique for both digital forensics investigations and data recovery. It offers the flexibility to recover data stored on digital media independent of the underlying file system. Thus, it can be used in the cases where we need to recover deleted files or when we have a corrupted, overwritten, or unknown file system. In this paper, we present a novel video file carving (VidCarve) framework to recover and reassemble fragmented video files into playable video files. VidCarve consists of four main components: identification and recovery, weight assignment, reassembly, and file construction. This paper focuses on the weight assignment and reassembly processes where the codec specification parameters of carved fragments were overwritten. We propose several weight assignment techniques to estimate the probability of adjacency between video fragments. Based on these weights, the reassembly algorithm recovers the video files by constructing their correct sequences. We provide experimental results for the proposed techniques of weight assignment and reassembly. We claim that the overall accuracy rate can produce forensically sound evidence and play a critical role in the process of digital evidence recovery in many criminal cases.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSUSC.2019.2914192</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1050-263X</orcidid><orcidid>https://orcid.org/0000-0002-9557-6496</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3782
ispartof IEEE transactions on sustainable computing, 2021-01, Vol.6 (1), p.131-143
issn 2377-3782
2377-3782
2377-3790
language eng
recordid cdi_crossref_primary_10_1109_TSUSC_2019_2914192
source IEEE Electronic Library (IEL)
subjects Algorithms
Codec
Codecs
Containers
Crime
Data recovery
digital evidence
Digital forensics
Digital media
file carving
Forensic computing
Forensics
fragment reassembly
fragmented video files
Fragments
ISO
Media
Metadata
Streaming media
Video data
Weight
title Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Techniques%20for%20Measuring%20the%20Probability%20of%20Adjacency%20between%20Carved%20Video%20Fragments:%20The%20VidCarve%20Approach&rft.jtitle=IEEE%20transactions%20on%20sustainable%20computing&rft.au=Alghafli,%20Khawla&rft.date=2021-01&rft.volume=6&rft.issue=1&rft.spage=131&rft.epage=143&rft.pages=131-143&rft.issn=2377-3782&rft.eissn=2377-3782&rft.coden=ITSCBE&rft_id=info:doi/10.1109/TSUSC.2019.2914192&rft_dat=%3Cproquest_RIE%3E2498872957%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498872957&rft_id=info:pmid/&rft_ieee_id=8703058&rfr_iscdi=true