Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach
File carving is a powerful technique for both digital forensics investigations and data recovery. It offers the flexibility to recover data stored on digital media independent of the underlying file system. Thus, it can be used in the cases where we need to recover deleted files or when we have a co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on sustainable computing 2021-01, Vol.6 (1), p.131-143 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 143 |
---|---|
container_issue | 1 |
container_start_page | 131 |
container_title | IEEE transactions on sustainable computing |
container_volume | 6 |
creator | Alghafli, Khawla Yeun, Chan Yeob Damiani, Ernesto |
description | File carving is a powerful technique for both digital forensics investigations and data recovery. It offers the flexibility to recover data stored on digital media independent of the underlying file system. Thus, it can be used in the cases where we need to recover deleted files or when we have a corrupted, overwritten, or unknown file system. In this paper, we present a novel video file carving (VidCarve) framework to recover and reassemble fragmented video files into playable video files. VidCarve consists of four main components: identification and recovery, weight assignment, reassembly, and file construction. This paper focuses on the weight assignment and reassembly processes where the codec specification parameters of carved fragments were overwritten. We propose several weight assignment techniques to estimate the probability of adjacency between video fragments. Based on these weights, the reassembly algorithm recovers the video files by constructing their correct sequences. We provide experimental results for the proposed techniques of weight assignment and reassembly. We claim that the overall accuracy rate can produce forensically sound evidence and play a critical role in the process of digital evidence recovery in many criminal cases. |
doi_str_mv | 10.1109/TSUSC.2019.2914192 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSUSC_2019_2914192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8703058</ieee_id><sourcerecordid>2498872957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-76a1b2050f0bf33cf25921183ad3bab237265475ae758e944f238dda6226d9063</originalsourceid><addsrcrecordid>eNpNUMtOwzAQjBBIVKU_ABdLnFPsdRLb3KqIl1QEUlOulpOs25Q2KXYK6t-TtBXitKvdmZ2dCYJrRseMUXWXzeazdAyUqTEoFjEFZ8EAuBAhFxLO__WXwcj7FaWUCRErYIPgM8NiWVdfO_TENo68ovE7V9UL0i6RvLsmN3m1rto9aSyZlCtTYF3sSY7tD2JNUuO-sSQfVYkNeXRmscG69fck68jd8LAmk-3WNaZYXgUX1qw9jk51GMwfH7L0OZy-Pb2kk2lYAMRtKBLDcqAxtTS3nBcW-leZ5Kbk3TedGUjiSMQGRSxRRZEFLsvSJABJqWjCh8Ht8W4n2xtr9arZubqT1BApKQWoWHQoOKIK13jv0OqtqzbG7TWjus9VH3LVfa76lGtHujmSKkT8I0hBOY0l_wUTf3Oh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498872957</pqid></control><display><type>article</type><title>Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Alghafli, Khawla ; Yeun, Chan Yeob ; Damiani, Ernesto</creator><creatorcontrib>Alghafli, Khawla ; Yeun, Chan Yeob ; Damiani, Ernesto</creatorcontrib><description>File carving is a powerful technique for both digital forensics investigations and data recovery. It offers the flexibility to recover data stored on digital media independent of the underlying file system. Thus, it can be used in the cases where we need to recover deleted files or when we have a corrupted, overwritten, or unknown file system. In this paper, we present a novel video file carving (VidCarve) framework to recover and reassemble fragmented video files into playable video files. VidCarve consists of four main components: identification and recovery, weight assignment, reassembly, and file construction. This paper focuses on the weight assignment and reassembly processes where the codec specification parameters of carved fragments were overwritten. We propose several weight assignment techniques to estimate the probability of adjacency between video fragments. Based on these weights, the reassembly algorithm recovers the video files by constructing their correct sequences. We provide experimental results for the proposed techniques of weight assignment and reassembly. We claim that the overall accuracy rate can produce forensically sound evidence and play a critical role in the process of digital evidence recovery in many criminal cases.</description><identifier>ISSN: 2377-3782</identifier><identifier>EISSN: 2377-3782</identifier><identifier>EISSN: 2377-3790</identifier><identifier>DOI: 10.1109/TSUSC.2019.2914192</identifier><identifier>CODEN: ITSCBE</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Codec ; Codecs ; Containers ; Crime ; Data recovery ; digital evidence ; Digital forensics ; Digital media ; file carving ; Forensic computing ; Forensics ; fragment reassembly ; fragmented video files ; Fragments ; ISO ; Media ; Metadata ; Streaming media ; Video data ; Weight</subject><ispartof>IEEE transactions on sustainable computing, 2021-01, Vol.6 (1), p.131-143</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-76a1b2050f0bf33cf25921183ad3bab237265475ae758e944f238dda6226d9063</citedby><cites>FETCH-LOGICAL-c225t-76a1b2050f0bf33cf25921183ad3bab237265475ae758e944f238dda6226d9063</cites><orcidid>0000-0003-1050-263X ; 0000-0002-9557-6496</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8703058$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8703058$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alghafli, Khawla</creatorcontrib><creatorcontrib>Yeun, Chan Yeob</creatorcontrib><creatorcontrib>Damiani, Ernesto</creatorcontrib><title>Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach</title><title>IEEE transactions on sustainable computing</title><addtitle>TSUSC</addtitle><description>File carving is a powerful technique for both digital forensics investigations and data recovery. It offers the flexibility to recover data stored on digital media independent of the underlying file system. Thus, it can be used in the cases where we need to recover deleted files or when we have a corrupted, overwritten, or unknown file system. In this paper, we present a novel video file carving (VidCarve) framework to recover and reassemble fragmented video files into playable video files. VidCarve consists of four main components: identification and recovery, weight assignment, reassembly, and file construction. This paper focuses on the weight assignment and reassembly processes where the codec specification parameters of carved fragments were overwritten. We propose several weight assignment techniques to estimate the probability of adjacency between video fragments. Based on these weights, the reassembly algorithm recovers the video files by constructing their correct sequences. We provide experimental results for the proposed techniques of weight assignment and reassembly. We claim that the overall accuracy rate can produce forensically sound evidence and play a critical role in the process of digital evidence recovery in many criminal cases.</description><subject>Algorithms</subject><subject>Codec</subject><subject>Codecs</subject><subject>Containers</subject><subject>Crime</subject><subject>Data recovery</subject><subject>digital evidence</subject><subject>Digital forensics</subject><subject>Digital media</subject><subject>file carving</subject><subject>Forensic computing</subject><subject>Forensics</subject><subject>fragment reassembly</subject><subject>fragmented video files</subject><subject>Fragments</subject><subject>ISO</subject><subject>Media</subject><subject>Metadata</subject><subject>Streaming media</subject><subject>Video data</subject><subject>Weight</subject><issn>2377-3782</issn><issn>2377-3782</issn><issn>2377-3790</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQjBBIVKU_ABdLnFPsdRLb3KqIl1QEUlOulpOs25Q2KXYK6t-TtBXitKvdmZ2dCYJrRseMUXWXzeazdAyUqTEoFjEFZ8EAuBAhFxLO__WXwcj7FaWUCRErYIPgM8NiWVdfO_TENo68ovE7V9UL0i6RvLsmN3m1rto9aSyZlCtTYF3sSY7tD2JNUuO-sSQfVYkNeXRmscG69fck68jd8LAmk-3WNaZYXgUX1qw9jk51GMwfH7L0OZy-Pb2kk2lYAMRtKBLDcqAxtTS3nBcW-leZ5Kbk3TedGUjiSMQGRSxRRZEFLsvSJABJqWjCh8Ht8W4n2xtr9arZubqT1BApKQWoWHQoOKIK13jv0OqtqzbG7TWjus9VH3LVfa76lGtHujmSKkT8I0hBOY0l_wUTf3Oh</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Alghafli, Khawla</creator><creator>Yeun, Chan Yeob</creator><creator>Damiani, Ernesto</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1050-263X</orcidid><orcidid>https://orcid.org/0000-0002-9557-6496</orcidid></search><sort><creationdate>202101</creationdate><title>Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach</title><author>Alghafli, Khawla ; Yeun, Chan Yeob ; Damiani, Ernesto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-76a1b2050f0bf33cf25921183ad3bab237265475ae758e944f238dda6226d9063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Codec</topic><topic>Codecs</topic><topic>Containers</topic><topic>Crime</topic><topic>Data recovery</topic><topic>digital evidence</topic><topic>Digital forensics</topic><topic>Digital media</topic><topic>file carving</topic><topic>Forensic computing</topic><topic>Forensics</topic><topic>fragment reassembly</topic><topic>fragmented video files</topic><topic>Fragments</topic><topic>ISO</topic><topic>Media</topic><topic>Metadata</topic><topic>Streaming media</topic><topic>Video data</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alghafli, Khawla</creatorcontrib><creatorcontrib>Yeun, Chan Yeob</creatorcontrib><creatorcontrib>Damiani, Ernesto</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on sustainable computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alghafli, Khawla</au><au>Yeun, Chan Yeob</au><au>Damiani, Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach</atitle><jtitle>IEEE transactions on sustainable computing</jtitle><stitle>TSUSC</stitle><date>2021-01</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><spage>131</spage><epage>143</epage><pages>131-143</pages><issn>2377-3782</issn><eissn>2377-3782</eissn><eissn>2377-3790</eissn><coden>ITSCBE</coden><abstract>File carving is a powerful technique for both digital forensics investigations and data recovery. It offers the flexibility to recover data stored on digital media independent of the underlying file system. Thus, it can be used in the cases where we need to recover deleted files or when we have a corrupted, overwritten, or unknown file system. In this paper, we present a novel video file carving (VidCarve) framework to recover and reassemble fragmented video files into playable video files. VidCarve consists of four main components: identification and recovery, weight assignment, reassembly, and file construction. This paper focuses on the weight assignment and reassembly processes where the codec specification parameters of carved fragments were overwritten. We propose several weight assignment techniques to estimate the probability of adjacency between video fragments. Based on these weights, the reassembly algorithm recovers the video files by constructing their correct sequences. We provide experimental results for the proposed techniques of weight assignment and reassembly. We claim that the overall accuracy rate can produce forensically sound evidence and play a critical role in the process of digital evidence recovery in many criminal cases.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSUSC.2019.2914192</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1050-263X</orcidid><orcidid>https://orcid.org/0000-0002-9557-6496</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3782 |
ispartof | IEEE transactions on sustainable computing, 2021-01, Vol.6 (1), p.131-143 |
issn | 2377-3782 2377-3782 2377-3790 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSUSC_2019_2914192 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Codec Codecs Containers Crime Data recovery digital evidence Digital forensics Digital media file carving Forensic computing Forensics fragment reassembly fragmented video files Fragments ISO Media Metadata Streaming media Video data Weight |
title | Techniques for Measuring the Probability of Adjacency between Carved Video Fragments: The VidCarve Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Techniques%20for%20Measuring%20the%20Probability%20of%20Adjacency%20between%20Carved%20Video%20Fragments:%20The%20VidCarve%20Approach&rft.jtitle=IEEE%20transactions%20on%20sustainable%20computing&rft.au=Alghafli,%20Khawla&rft.date=2021-01&rft.volume=6&rft.issue=1&rft.spage=131&rft.epage=143&rft.pages=131-143&rft.issn=2377-3782&rft.eissn=2377-3782&rft.coden=ITSCBE&rft_id=info:doi/10.1109/TSUSC.2019.2914192&rft_dat=%3Cproquest_RIE%3E2498872957%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498872957&rft_id=info:pmid/&rft_ieee_id=8703058&rfr_iscdi=true |