An Anomalous Behavior Detection Model in Cloud Computing
This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (laaS). The security of such VMs is critical to laaS security. Many studies have been done on cloud computing security issues,...
Gespeichert in:
Veröffentlicht in: | Tsinghua science and technology 2016-06, Vol.21 (3), p.322-332 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | 3 |
container_start_page | 322 |
container_title | Tsinghua science and technology |
container_volume | 21 |
creator | Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu |
description | This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (laaS). The security of such VMs is critical to laaS security. Many studies have been done on cloud computing security issues, but research into VM security issues, especially regarding VM network traffic anomalous behavior detection, remains inadequate. More and more studies show that communication among internal nodes exhibits complex patterns. Communication among VMs in cloud computing is invisible. Researchers find such issues challenging, and few solutions have been proposed--leaving cloud computing vulnerable to network attacks. This paper proposes a model that uses Software-Defined Networks (SDN) to implement traffic redirection. Our model can capture inter-VM traffic, detect known and unknown anomalous network behaviors, adopt hybrid techniques to analyze VM network behaviors, and control network systems. The experimental results indicate that the effectiveness of our approach is greater than 90%, and prove the feasibility of the model. |
doi_str_mv | 10.1109/TST.2016.7488743 |
format | Article |
fullrecord | <record><control><sourceid>crossref_chong</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TST_2016_7488743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669152660</cqvip_id><sourcerecordid>10_1109_TST_2016_7488743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-7c1cbe6082622efeaf9a7ccd35af64d473eb350ddf40a21055494b84f6a08a9a3</originalsourceid><addsrcrecordid>eNo9jztPhEAUhSdGE9fV3nJiD955DyXiM1ljIdZkmMcuBpgVWBP_vWwkVvcU9zs5H0LXBFJCILst38uUApGp4lorzk7QimilEyVBns4ZQCVACT9HF-P4CcCkUGyFdN7jvI-daeNhxHd-Z76bOOB7P3k7NbHHr9H5Fjc9LuYPh4vY7Q9T028v0Vkw7eivlrtGH48PZfGcbN6eXop8k1hG6JQoS2ztJWgqKfXBm5AZZa1jwgTJHVfM10yAc4GDoQSE4BmvNQ_SgDaZYWsEf712iOM4-FDth6Yzw09FoDqaV7N5dTSvFvMZuVmQXey3X_PYf0bKjAgqJbBfx45XBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Anomalous Behavior Detection Model in Cloud Computing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</creator><creatorcontrib>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</creatorcontrib><description>This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (laaS). The security of such VMs is critical to laaS security. Many studies have been done on cloud computing security issues, but research into VM security issues, especially regarding VM network traffic anomalous behavior detection, remains inadequate. More and more studies show that communication among internal nodes exhibits complex patterns. Communication among VMs in cloud computing is invisible. Researchers find such issues challenging, and few solutions have been proposed--leaving cloud computing vulnerable to network attacks. This paper proposes a model that uses Software-Defined Networks (SDN) to implement traffic redirection. Our model can capture inter-VM traffic, detect known and unknown anomalous network behaviors, adopt hybrid techniques to analyze VM network behaviors, and control network systems. The experimental results indicate that the effectiveness of our approach is greater than 90%, and prove the feasibility of the model.</description><identifier>ISSN: 1007-0214</identifier><identifier>EISSN: 1878-7606</identifier><identifier>EISSN: 1007-0214</identifier><identifier>DOI: 10.1109/TST.2016.7488743</identifier><language>eng</language><subject>LAAS ; 安全问题 ; 异常行为 ; 控制网络系统 ; 检测模型 ; 网络流量 ; 虚拟机 ; 计算</subject><ispartof>Tsinghua science and technology, 2016-06, Vol.21 (3), p.322-332</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-7c1cbe6082622efeaf9a7ccd35af64d473eb350ddf40a21055494b84f6a08a9a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85782X/85782X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</creatorcontrib><title>An Anomalous Behavior Detection Model in Cloud Computing</title><title>Tsinghua science and technology</title><addtitle>Tsinghua Science and Technology</addtitle><description>This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (laaS). The security of such VMs is critical to laaS security. Many studies have been done on cloud computing security issues, but research into VM security issues, especially regarding VM network traffic anomalous behavior detection, remains inadequate. More and more studies show that communication among internal nodes exhibits complex patterns. Communication among VMs in cloud computing is invisible. Researchers find such issues challenging, and few solutions have been proposed--leaving cloud computing vulnerable to network attacks. This paper proposes a model that uses Software-Defined Networks (SDN) to implement traffic redirection. Our model can capture inter-VM traffic, detect known and unknown anomalous network behaviors, adopt hybrid techniques to analyze VM network behaviors, and control network systems. The experimental results indicate that the effectiveness of our approach is greater than 90%, and prove the feasibility of the model.</description><subject>LAAS</subject><subject>安全问题</subject><subject>异常行为</subject><subject>控制网络系统</subject><subject>检测模型</subject><subject>网络流量</subject><subject>虚拟机</subject><subject>计算</subject><issn>1007-0214</issn><issn>1878-7606</issn><issn>1007-0214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9jztPhEAUhSdGE9fV3nJiD955DyXiM1ljIdZkmMcuBpgVWBP_vWwkVvcU9zs5H0LXBFJCILst38uUApGp4lorzk7QimilEyVBns4ZQCVACT9HF-P4CcCkUGyFdN7jvI-daeNhxHd-Z76bOOB7P3k7NbHHr9H5Fjc9LuYPh4vY7Q9T028v0Vkw7eivlrtGH48PZfGcbN6eXop8k1hG6JQoS2ztJWgqKfXBm5AZZa1jwgTJHVfM10yAc4GDoQSE4BmvNQ_SgDaZYWsEf712iOM4-FDth6Yzw09FoDqaV7N5dTSvFvMZuVmQXey3X_PYf0bKjAgqJbBfx45XBg</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160601</creationdate><title>An Anomalous Behavior Detection Model in Cloud Computing</title><author>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-7c1cbe6082622efeaf9a7ccd35af64d473eb350ddf40a21055494b84f6a08a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>LAAS</topic><topic>安全问题</topic><topic>异常行为</topic><topic>控制网络系统</topic><topic>检测模型</topic><topic>网络流量</topic><topic>虚拟机</topic><topic>计算</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Tsinghua science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Anomalous Behavior Detection Model in Cloud Computing</atitle><jtitle>Tsinghua science and technology</jtitle><addtitle>Tsinghua Science and Technology</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>21</volume><issue>3</issue><spage>322</spage><epage>332</epage><pages>322-332</pages><issn>1007-0214</issn><eissn>1878-7606</eissn><eissn>1007-0214</eissn><abstract>This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (laaS). The security of such VMs is critical to laaS security. Many studies have been done on cloud computing security issues, but research into VM security issues, especially regarding VM network traffic anomalous behavior detection, remains inadequate. More and more studies show that communication among internal nodes exhibits complex patterns. Communication among VMs in cloud computing is invisible. Researchers find such issues challenging, and few solutions have been proposed--leaving cloud computing vulnerable to network attacks. This paper proposes a model that uses Software-Defined Networks (SDN) to implement traffic redirection. Our model can capture inter-VM traffic, detect known and unknown anomalous network behaviors, adopt hybrid techniques to analyze VM network behaviors, and control network systems. The experimental results indicate that the effectiveness of our approach is greater than 90%, and prove the feasibility of the model.</abstract><doi>10.1109/TST.2016.7488743</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-0214 |
ispartof | Tsinghua science and technology, 2016-06, Vol.21 (3), p.322-332 |
issn | 1007-0214 1878-7606 1007-0214 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TST_2016_7488743 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | LAAS 安全问题 异常行为 控制网络系统 检测模型 网络流量 虚拟机 计算 |
title | An Anomalous Behavior Detection Model in Cloud Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Anomalous%20Behavior%20Detection%20Model%20in%20Cloud%20Computing&rft.jtitle=Tsinghua%20science%20and%20technology&rft.au=Xiaoming%20Ye%20Xingshu%20Chen%20Haizhou%20Wang%20Xuemei%20Zeng%20Guolin%20Shao%20Xueyuan%20Yin%20Chun%20Xu&rft.date=2016-06-01&rft.volume=21&rft.issue=3&rft.spage=322&rft.epage=332&rft.pages=322-332&rft.issn=1007-0214&rft.eissn=1878-7606&rft_id=info:doi/10.1109/TST.2016.7488743&rft_dat=%3Ccrossref_chong%3E10_1109_TST_2016_7488743%3C/crossref_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=669152660&rfr_iscdi=true |