An Anomalous Behavior Detection Model in Cloud Computing

This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (laaS). The security of such VMs is critical to laaS security. Many studies have been done on cloud computing security issues,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tsinghua science and technology 2016-06, Vol.21 (3), p.322-332
1. Verfasser: Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332
container_issue 3
container_start_page 322
container_title Tsinghua science and technology
container_volume 21
creator Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu
description This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (laaS). The security of such VMs is critical to laaS security. Many studies have been done on cloud computing security issues, but research into VM security issues, especially regarding VM network traffic anomalous behavior detection, remains inadequate. More and more studies show that communication among internal nodes exhibits complex patterns. Communication among VMs in cloud computing is invisible. Researchers find such issues challenging, and few solutions have been proposed--leaving cloud computing vulnerable to network attacks. This paper proposes a model that uses Software-Defined Networks (SDN) to implement traffic redirection. Our model can capture inter-VM traffic, detect known and unknown anomalous network behaviors, adopt hybrid techniques to analyze VM network behaviors, and control network systems. The experimental results indicate that the effectiveness of our approach is greater than 90%, and prove the feasibility of the model.
doi_str_mv 10.1109/TST.2016.7488743
format Article
fullrecord <record><control><sourceid>crossref_chong</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TST_2016_7488743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669152660</cqvip_id><sourcerecordid>10_1109_TST_2016_7488743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-7c1cbe6082622efeaf9a7ccd35af64d473eb350ddf40a21055494b84f6a08a9a3</originalsourceid><addsrcrecordid>eNo9jztPhEAUhSdGE9fV3nJiD955DyXiM1ljIdZkmMcuBpgVWBP_vWwkVvcU9zs5H0LXBFJCILst38uUApGp4lorzk7QimilEyVBns4ZQCVACT9HF-P4CcCkUGyFdN7jvI-daeNhxHd-Z76bOOB7P3k7NbHHr9H5Fjc9LuYPh4vY7Q9T028v0Vkw7eivlrtGH48PZfGcbN6eXop8k1hG6JQoS2ztJWgqKfXBm5AZZa1jwgTJHVfM10yAc4GDoQSE4BmvNQ_SgDaZYWsEf712iOM4-FDth6Yzw09FoDqaV7N5dTSvFvMZuVmQXey3X_PYf0bKjAgqJbBfx45XBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Anomalous Behavior Detection Model in Cloud Computing</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</creator><creatorcontrib>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</creatorcontrib><description>This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (laaS). The security of such VMs is critical to laaS security. Many studies have been done on cloud computing security issues, but research into VM security issues, especially regarding VM network traffic anomalous behavior detection, remains inadequate. More and more studies show that communication among internal nodes exhibits complex patterns. Communication among VMs in cloud computing is invisible. Researchers find such issues challenging, and few solutions have been proposed--leaving cloud computing vulnerable to network attacks. This paper proposes a model that uses Software-Defined Networks (SDN) to implement traffic redirection. Our model can capture inter-VM traffic, detect known and unknown anomalous network behaviors, adopt hybrid techniques to analyze VM network behaviors, and control network systems. The experimental results indicate that the effectiveness of our approach is greater than 90%, and prove the feasibility of the model.</description><identifier>ISSN: 1007-0214</identifier><identifier>EISSN: 1878-7606</identifier><identifier>EISSN: 1007-0214</identifier><identifier>DOI: 10.1109/TST.2016.7488743</identifier><language>eng</language><subject>LAAS ; 安全问题 ; 异常行为 ; 控制网络系统 ; 检测模型 ; 网络流量 ; 虚拟机 ; 计算</subject><ispartof>Tsinghua science and technology, 2016-06, Vol.21 (3), p.322-332</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-7c1cbe6082622efeaf9a7ccd35af64d473eb350ddf40a21055494b84f6a08a9a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85782X/85782X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</creatorcontrib><title>An Anomalous Behavior Detection Model in Cloud Computing</title><title>Tsinghua science and technology</title><addtitle>Tsinghua Science and Technology</addtitle><description>This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (laaS). The security of such VMs is critical to laaS security. Many studies have been done on cloud computing security issues, but research into VM security issues, especially regarding VM network traffic anomalous behavior detection, remains inadequate. More and more studies show that communication among internal nodes exhibits complex patterns. Communication among VMs in cloud computing is invisible. Researchers find such issues challenging, and few solutions have been proposed--leaving cloud computing vulnerable to network attacks. This paper proposes a model that uses Software-Defined Networks (SDN) to implement traffic redirection. Our model can capture inter-VM traffic, detect known and unknown anomalous network behaviors, adopt hybrid techniques to analyze VM network behaviors, and control network systems. The experimental results indicate that the effectiveness of our approach is greater than 90%, and prove the feasibility of the model.</description><subject>LAAS</subject><subject>安全问题</subject><subject>异常行为</subject><subject>控制网络系统</subject><subject>检测模型</subject><subject>网络流量</subject><subject>虚拟机</subject><subject>计算</subject><issn>1007-0214</issn><issn>1878-7606</issn><issn>1007-0214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9jztPhEAUhSdGE9fV3nJiD955DyXiM1ljIdZkmMcuBpgVWBP_vWwkVvcU9zs5H0LXBFJCILst38uUApGp4lorzk7QimilEyVBns4ZQCVACT9HF-P4CcCkUGyFdN7jvI-daeNhxHd-Z76bOOB7P3k7NbHHr9H5Fjc9LuYPh4vY7Q9T028v0Vkw7eivlrtGH48PZfGcbN6eXop8k1hG6JQoS2ztJWgqKfXBm5AZZa1jwgTJHVfM10yAc4GDoQSE4BmvNQ_SgDaZYWsEf712iOM4-FDth6Yzw09FoDqaV7N5dTSvFvMZuVmQXey3X_PYf0bKjAgqJbBfx45XBg</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160601</creationdate><title>An Anomalous Behavior Detection Model in Cloud Computing</title><author>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-7c1cbe6082622efeaf9a7ccd35af64d473eb350ddf40a21055494b84f6a08a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>LAAS</topic><topic>安全问题</topic><topic>异常行为</topic><topic>控制网络系统</topic><topic>检测模型</topic><topic>网络流量</topic><topic>虚拟机</topic><topic>计算</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Tsinghua science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaoming Ye Xingshu Chen Haizhou Wang Xuemei Zeng Guolin Shao Xueyuan Yin Chun Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Anomalous Behavior Detection Model in Cloud Computing</atitle><jtitle>Tsinghua science and technology</jtitle><addtitle>Tsinghua Science and Technology</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>21</volume><issue>3</issue><spage>322</spage><epage>332</epage><pages>322-332</pages><issn>1007-0214</issn><eissn>1878-7606</eissn><eissn>1007-0214</eissn><abstract>This paper proposes an anomalous behavior detection model based on cloud computing. Virtual Machines (VMs) are one of the key components of cloud Infrastructure as a Service (laaS). The security of such VMs is critical to laaS security. Many studies have been done on cloud computing security issues, but research into VM security issues, especially regarding VM network traffic anomalous behavior detection, remains inadequate. More and more studies show that communication among internal nodes exhibits complex patterns. Communication among VMs in cloud computing is invisible. Researchers find such issues challenging, and few solutions have been proposed--leaving cloud computing vulnerable to network attacks. This paper proposes a model that uses Software-Defined Networks (SDN) to implement traffic redirection. Our model can capture inter-VM traffic, detect known and unknown anomalous network behaviors, adopt hybrid techniques to analyze VM network behaviors, and control network systems. The experimental results indicate that the effectiveness of our approach is greater than 90%, and prove the feasibility of the model.</abstract><doi>10.1109/TST.2016.7488743</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1007-0214
ispartof Tsinghua science and technology, 2016-06, Vol.21 (3), p.322-332
issn 1007-0214
1878-7606
1007-0214
language eng
recordid cdi_crossref_primary_10_1109_TST_2016_7488743
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects LAAS
安全问题
异常行为
控制网络系统
检测模型
网络流量
虚拟机
计算
title An Anomalous Behavior Detection Model in Cloud Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Anomalous%20Behavior%20Detection%20Model%20in%20Cloud%20Computing&rft.jtitle=Tsinghua%20science%20and%20technology&rft.au=Xiaoming%20Ye%20Xingshu%20Chen%20Haizhou%20Wang%20Xuemei%20Zeng%20Guolin%20Shao%20Xueyuan%20Yin%20Chun%20Xu&rft.date=2016-06-01&rft.volume=21&rft.issue=3&rft.spage=322&rft.epage=332&rft.pages=322-332&rft.issn=1007-0214&rft.eissn=1878-7606&rft_id=info:doi/10.1109/TST.2016.7488743&rft_dat=%3Ccrossref_chong%3E10_1109_TST_2016_7488743%3C/crossref_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=669152660&rfr_iscdi=true