Exploiting Flexibility of District Heating Networks in Combined Heat and Power Dispatch

Combined heat and power dispatch (CHPD) is utilized for energy-efficient coordination of integrated electricity and heat systems. By incorporating district heating networks (DHNs) into CHPD, the thermal storage capability of network pipelines can be exploited to increase the operational flexibility...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2020-10, Vol.11 (4), p.2174-2188
Hauptverfasser: Jiang, Yibao, Wan, Can, Botterud, Audun, Song, Yonghua, Xia, Shiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2188
container_issue 4
container_start_page 2174
container_title IEEE transactions on sustainable energy
container_volume 11
creator Jiang, Yibao
Wan, Can
Botterud, Audun
Song, Yonghua
Xia, Shiwei
description Combined heat and power dispatch (CHPD) is utilized for energy-efficient coordination of integrated electricity and heat systems. By incorporating district heating networks (DHNs) into CHPD, the thermal storage capability of network pipelines can be exploited to increase the operational flexibility for high penetration of renewable energy. This article proposes a flexibility evaluation method based on a generalized thermal storage model to systematically characterize and quantify the flexibility of DHNs in CHPD. In particular, systematic flexibility metrics are introduced to define the parameters of the proposed thermal storage model, including heat ramping capability, heat input limits, and heat storage capacities. A direct quantification method is proposed to explicitly derive these metrics without extensive simulations required in traditional methods. Besides, four different control modes of district heating systems are identified and modeled according to the controllability of mass flow rates and supply temperature at heat sources. A simplified CHPD model is developed based on sequential linear programming and a lumped heat loss model to enhance the computational efficiency. Comprehensive case studies validate the effectiveness of the proposed method in evaluating the flexibility of DHNs in CHPD. It is demonstrated that the flexibility of DHNs in CHPD can be exploited as far as possible in the control mode with adjustable mass flow and supply temperature.
doi_str_mv 10.1109/TSTE.2019.2952147
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSTE_2019_2952147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8894410</ieee_id><sourcerecordid>2444619999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-2447ca8d34438af6e562d9b35ce13c339ba619060f992ad2a1f671f0cc64ad8e3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiQT5AcabJl6DbU_Z1kuDICZETcR42XRdp8WxzrYE-PduQDg35yTvx0kehG4pGVFKxMPyYzkdMULFiIkxozy9QD0quBgCgfTyfDNxjQYhrEg7AJAA6aGv6a6pnI22_sazyuxsbisb99iV-MmG6K2OeG7UQX81cev8b8C2xhO3zm1tioOIVV3gd7c1vgs1KuqfG3RVqiqYwWn30edsupzMh4u355fJ42KogdM4ZJynWmUFcA6ZKhMzTlghchhrQ0EDiFwlVJCElEIwVTBFyySlJdE64arIDPTR_bG38e5vY0KUK7fxdftStt28DbfTuujRpb0LwZtSNt6uld9LSmSHUHYIZYdQnhC2mbtjxhpjzv4sE5xTAv9d6GyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444619999</pqid></control><display><type>article</type><title>Exploiting Flexibility of District Heating Networks in Combined Heat and Power Dispatch</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Yibao ; Wan, Can ; Botterud, Audun ; Song, Yonghua ; Xia, Shiwei</creator><creatorcontrib>Jiang, Yibao ; Wan, Can ; Botterud, Audun ; Song, Yonghua ; Xia, Shiwei</creatorcontrib><description>Combined heat and power dispatch (CHPD) is utilized for energy-efficient coordination of integrated electricity and heat systems. By incorporating district heating networks (DHNs) into CHPD, the thermal storage capability of network pipelines can be exploited to increase the operational flexibility for high penetration of renewable energy. This article proposes a flexibility evaluation method based on a generalized thermal storage model to systematically characterize and quantify the flexibility of DHNs in CHPD. In particular, systematic flexibility metrics are introduced to define the parameters of the proposed thermal storage model, including heat ramping capability, heat input limits, and heat storage capacities. A direct quantification method is proposed to explicitly derive these metrics without extensive simulations required in traditional methods. Besides, four different control modes of district heating systems are identified and modeled according to the controllability of mass flow rates and supply temperature at heat sources. A simplified CHPD model is developed based on sequential linear programming and a lumped heat loss model to enhance the computational efficiency. Comprehensive case studies validate the effectiveness of the proposed method in evaluating the flexibility of DHNs in CHPD. It is demonstrated that the flexibility of DHNs in CHPD can be exploited as far as possible in the control mode with adjustable mass flow and supply temperature.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2019.2952147</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cogeneration ; Combined heat and power dispatch ; Computer applications ; Computer simulation ; Controllability ; District heating ; district heating network ; Energy efficiency ; Flexibility ; Flow rates ; generalized thermal storage model ; Heat ; Heat loss ; Heat sources ; Heat storage ; Heating ; Heating systems ; Linear programming ; Mass flow rate ; Power dispatch ; Renewable energy ; Renewable energy sources ; Stability ; Temperature ; Thermal storage</subject><ispartof>IEEE transactions on sustainable energy, 2020-10, Vol.11 (4), p.2174-2188</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-2447ca8d34438af6e562d9b35ce13c339ba619060f992ad2a1f671f0cc64ad8e3</citedby><cites>FETCH-LOGICAL-c341t-2447ca8d34438af6e562d9b35ce13c339ba619060f992ad2a1f671f0cc64ad8e3</cites><orcidid>0000-0001-8985-9812 ; 0000-0002-1495-4644 ; 0000-0003-0263-9812 ; 0000-0003-1272-210X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8894410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8894410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Yibao</creatorcontrib><creatorcontrib>Wan, Can</creatorcontrib><creatorcontrib>Botterud, Audun</creatorcontrib><creatorcontrib>Song, Yonghua</creatorcontrib><creatorcontrib>Xia, Shiwei</creatorcontrib><title>Exploiting Flexibility of District Heating Networks in Combined Heat and Power Dispatch</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>Combined heat and power dispatch (CHPD) is utilized for energy-efficient coordination of integrated electricity and heat systems. By incorporating district heating networks (DHNs) into CHPD, the thermal storage capability of network pipelines can be exploited to increase the operational flexibility for high penetration of renewable energy. This article proposes a flexibility evaluation method based on a generalized thermal storage model to systematically characterize and quantify the flexibility of DHNs in CHPD. In particular, systematic flexibility metrics are introduced to define the parameters of the proposed thermal storage model, including heat ramping capability, heat input limits, and heat storage capacities. A direct quantification method is proposed to explicitly derive these metrics without extensive simulations required in traditional methods. Besides, four different control modes of district heating systems are identified and modeled according to the controllability of mass flow rates and supply temperature at heat sources. A simplified CHPD model is developed based on sequential linear programming and a lumped heat loss model to enhance the computational efficiency. Comprehensive case studies validate the effectiveness of the proposed method in evaluating the flexibility of DHNs in CHPD. It is demonstrated that the flexibility of DHNs in CHPD can be exploited as far as possible in the control mode with adjustable mass flow and supply temperature.</description><subject>Cogeneration</subject><subject>Combined heat and power dispatch</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Controllability</subject><subject>District heating</subject><subject>district heating network</subject><subject>Energy efficiency</subject><subject>Flexibility</subject><subject>Flow rates</subject><subject>generalized thermal storage model</subject><subject>Heat</subject><subject>Heat loss</subject><subject>Heat sources</subject><subject>Heat storage</subject><subject>Heating</subject><subject>Heating systems</subject><subject>Linear programming</subject><subject>Mass flow rate</subject><subject>Power dispatch</subject><subject>Renewable energy</subject><subject>Renewable energy sources</subject><subject>Stability</subject><subject>Temperature</subject><subject>Thermal storage</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhujiQT5AcabJl6DbU_Z1kuDICZETcR42XRdp8WxzrYE-PduQDg35yTvx0kehG4pGVFKxMPyYzkdMULFiIkxozy9QD0quBgCgfTyfDNxjQYhrEg7AJAA6aGv6a6pnI22_sazyuxsbisb99iV-MmG6K2OeG7UQX81cev8b8C2xhO3zm1tioOIVV3gd7c1vgs1KuqfG3RVqiqYwWn30edsupzMh4u355fJ42KogdM4ZJynWmUFcA6ZKhMzTlghchhrQ0EDiFwlVJCElEIwVTBFyySlJdE64arIDPTR_bG38e5vY0KUK7fxdftStt28DbfTuujRpb0LwZtSNt6uld9LSmSHUHYIZYdQnhC2mbtjxhpjzv4sE5xTAv9d6GyM</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Jiang, Yibao</creator><creator>Wan, Can</creator><creator>Botterud, Audun</creator><creator>Song, Yonghua</creator><creator>Xia, Shiwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8985-9812</orcidid><orcidid>https://orcid.org/0000-0002-1495-4644</orcidid><orcidid>https://orcid.org/0000-0003-0263-9812</orcidid><orcidid>https://orcid.org/0000-0003-1272-210X</orcidid></search><sort><creationdate>20201001</creationdate><title>Exploiting Flexibility of District Heating Networks in Combined Heat and Power Dispatch</title><author>Jiang, Yibao ; Wan, Can ; Botterud, Audun ; Song, Yonghua ; Xia, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-2447ca8d34438af6e562d9b35ce13c339ba619060f992ad2a1f671f0cc64ad8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cogeneration</topic><topic>Combined heat and power dispatch</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Controllability</topic><topic>District heating</topic><topic>district heating network</topic><topic>Energy efficiency</topic><topic>Flexibility</topic><topic>Flow rates</topic><topic>generalized thermal storage model</topic><topic>Heat</topic><topic>Heat loss</topic><topic>Heat sources</topic><topic>Heat storage</topic><topic>Heating</topic><topic>Heating systems</topic><topic>Linear programming</topic><topic>Mass flow rate</topic><topic>Power dispatch</topic><topic>Renewable energy</topic><topic>Renewable energy sources</topic><topic>Stability</topic><topic>Temperature</topic><topic>Thermal storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Yibao</creatorcontrib><creatorcontrib>Wan, Can</creatorcontrib><creatorcontrib>Botterud, Audun</creatorcontrib><creatorcontrib>Song, Yonghua</creatorcontrib><creatorcontrib>Xia, Shiwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Yibao</au><au>Wan, Can</au><au>Botterud, Audun</au><au>Song, Yonghua</au><au>Xia, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Flexibility of District Heating Networks in Combined Heat and Power Dispatch</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>11</volume><issue>4</issue><spage>2174</spage><epage>2188</epage><pages>2174-2188</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>Combined heat and power dispatch (CHPD) is utilized for energy-efficient coordination of integrated electricity and heat systems. By incorporating district heating networks (DHNs) into CHPD, the thermal storage capability of network pipelines can be exploited to increase the operational flexibility for high penetration of renewable energy. This article proposes a flexibility evaluation method based on a generalized thermal storage model to systematically characterize and quantify the flexibility of DHNs in CHPD. In particular, systematic flexibility metrics are introduced to define the parameters of the proposed thermal storage model, including heat ramping capability, heat input limits, and heat storage capacities. A direct quantification method is proposed to explicitly derive these metrics without extensive simulations required in traditional methods. Besides, four different control modes of district heating systems are identified and modeled according to the controllability of mass flow rates and supply temperature at heat sources. A simplified CHPD model is developed based on sequential linear programming and a lumped heat loss model to enhance the computational efficiency. Comprehensive case studies validate the effectiveness of the proposed method in evaluating the flexibility of DHNs in CHPD. It is demonstrated that the flexibility of DHNs in CHPD can be exploited as far as possible in the control mode with adjustable mass flow and supply temperature.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2019.2952147</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8985-9812</orcidid><orcidid>https://orcid.org/0000-0002-1495-4644</orcidid><orcidid>https://orcid.org/0000-0003-0263-9812</orcidid><orcidid>https://orcid.org/0000-0003-1272-210X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2020-10, Vol.11 (4), p.2174-2188
issn 1949-3029
1949-3037
language eng
recordid cdi_crossref_primary_10_1109_TSTE_2019_2952147
source IEEE Electronic Library (IEL)
subjects Cogeneration
Combined heat and power dispatch
Computer applications
Computer simulation
Controllability
District heating
district heating network
Energy efficiency
Flexibility
Flow rates
generalized thermal storage model
Heat
Heat loss
Heat sources
Heat storage
Heating
Heating systems
Linear programming
Mass flow rate
Power dispatch
Renewable energy
Renewable energy sources
Stability
Temperature
Thermal storage
title Exploiting Flexibility of District Heating Networks in Combined Heat and Power Dispatch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Flexibility%20of%20District%20Heating%20Networks%20in%20Combined%20Heat%20and%20Power%20Dispatch&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Jiang,%20Yibao&rft.date=2020-10-01&rft.volume=11&rft.issue=4&rft.spage=2174&rft.epage=2188&rft.pages=2174-2188&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2019.2952147&rft_dat=%3Cproquest_RIE%3E2444619999%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444619999&rft_id=info:pmid/&rft_ieee_id=8894410&rfr_iscdi=true