Solar PV-Based Scalable DC Microgrid for Rural Electrification in Developing Regions

In this paper, we detail the design, analysis, and implementation of a highly distributed off-grid solar photovoltaic dc microgrid architecture suitable for rural electrification in developing countries. The proposed architecture is superior in comparison with existing architectures for rural electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2018-01, Vol.9 (1), p.390-399
Hauptverfasser: Nasir, Mashood, Khan, Hassan Abbas, Hussain, Arif, Mateen, Laeeq, Zaffar, Nauman Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 1
container_start_page 390
container_title IEEE transactions on sustainable energy
container_volume 9
creator Nasir, Mashood
Khan, Hassan Abbas
Hussain, Arif
Mateen, Laeeq
Zaffar, Nauman Ahmad
description In this paper, we detail the design, analysis, and implementation of a highly distributed off-grid solar photovoltaic dc microgrid architecture suitable for rural electrification in developing countries. The proposed architecture is superior in comparison with existing architectures for rural electrification because of its 1) generation and storage scalability, 2) higher distribution efficiency (because of distributed generation and distributed storage for lower line losses), 3) ability to provide power for larger communal loads without the requirement for large, dedicated generation by extracting the benefit of usage diversity, and 4) localized control by using the hysteresis-based voltage droop method, thus eliminating the need for a central controller. The proposed microgrid architecture consists of several nanogrids capable of the self-sustained generation, storage, and bidirectional flow of power within the microgrid. Bidirectional power flow and distributed voltage droop control are implemented through the duty cycle control of a modified flyback converter. A detailed analysis in terms of power flow, loss, and system efficiency was conducted by using the Newton-Raphson method modified for dc power flow at varying distribution voltages, conductor sizes, and schemes of interconnection among the contributing nanogrids. A scaled-down version of the proposed architecture with various power sharing scenarios was also implemented on hardware, and yielded satisfactory results.
doi_str_mv 10.1109/TSTE.2017.2736160
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSTE_2017_2736160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8002658</ieee_id><sourcerecordid>10_1109_TSTE_2017_2736160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-f0dcd1c322f9581834fb1d3948f8cd95a8cd906c863645d60b2dd3910ad8b2673</originalsourceid><addsrcrecordid>eNo9kN1OwzAMhSMEEtPYAyBu8gIdTtym6SVsYyANgbbCbZXmZwoK65QMJN6eVpvmC_vI9rGsj5BbBlPGoLqvN_ViyoGVU16iYAIuyIhVeZUhYHl51ry6JpOUvqAPRBQII1JvuqAiff_MHlWyhm60CqoNls5n9NXr2G2jN9R1ka5_ogp0Eaw-RO-8Vgff7ajf0bn9taHb-92Wru22b6YbcuVUSHZyqmPy8bSoZ8_Z6m35MntYZRqRHTIHRhumkXNXFZJJzF3LDFa5dFKbqlBDBqGlQJEXRkDLTT9moIxsuShxTNjxbv9nStG6Zh_9t4p_DYNmINMMZJqBTHMi03vujh5vrT3vSwAuCon_pwheuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solar PV-Based Scalable DC Microgrid for Rural Electrification in Developing Regions</title><source>IEEE Electronic Library (IEL)</source><creator>Nasir, Mashood ; Khan, Hassan Abbas ; Hussain, Arif ; Mateen, Laeeq ; Zaffar, Nauman Ahmad</creator><creatorcontrib>Nasir, Mashood ; Khan, Hassan Abbas ; Hussain, Arif ; Mateen, Laeeq ; Zaffar, Nauman Ahmad</creatorcontrib><description>In this paper, we detail the design, analysis, and implementation of a highly distributed off-grid solar photovoltaic dc microgrid architecture suitable for rural electrification in developing countries. The proposed architecture is superior in comparison with existing architectures for rural electrification because of its 1) generation and storage scalability, 2) higher distribution efficiency (because of distributed generation and distributed storage for lower line losses), 3) ability to provide power for larger communal loads without the requirement for large, dedicated generation by extracting the benefit of usage diversity, and 4) localized control by using the hysteresis-based voltage droop method, thus eliminating the need for a central controller. The proposed microgrid architecture consists of several nanogrids capable of the self-sustained generation, storage, and bidirectional flow of power within the microgrid. Bidirectional power flow and distributed voltage droop control are implemented through the duty cycle control of a modified flyback converter. A detailed analysis in terms of power flow, loss, and system efficiency was conducted by using the Newton-Raphson method modified for dc power flow at varying distribution voltages, conductor sizes, and schemes of interconnection among the contributing nanogrids. A scaled-down version of the proposed architecture with various power sharing scenarios was also implemented on hardware, and yielded satisfactory results.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2017.2736160</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Batteries ; Computer architecture ; DC microgrids ; distributed generation ; Distributed power generation ; Maximum power point trackers ; Microgrids ; Newton–Raphson method ; rural electrification ; Scalability ; solar PV ; Voltage control</subject><ispartof>IEEE transactions on sustainable energy, 2018-01, Vol.9 (1), p.390-399</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-f0dcd1c322f9581834fb1d3948f8cd95a8cd906c863645d60b2dd3910ad8b2673</citedby><cites>FETCH-LOGICAL-c331t-f0dcd1c322f9581834fb1d3948f8cd95a8cd906c863645d60b2dd3910ad8b2673</cites><orcidid>0000-0001-6854-1581 ; 0000-0003-2847-9773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8002658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8002658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nasir, Mashood</creatorcontrib><creatorcontrib>Khan, Hassan Abbas</creatorcontrib><creatorcontrib>Hussain, Arif</creatorcontrib><creatorcontrib>Mateen, Laeeq</creatorcontrib><creatorcontrib>Zaffar, Nauman Ahmad</creatorcontrib><title>Solar PV-Based Scalable DC Microgrid for Rural Electrification in Developing Regions</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>In this paper, we detail the design, analysis, and implementation of a highly distributed off-grid solar photovoltaic dc microgrid architecture suitable for rural electrification in developing countries. The proposed architecture is superior in comparison with existing architectures for rural electrification because of its 1) generation and storage scalability, 2) higher distribution efficiency (because of distributed generation and distributed storage for lower line losses), 3) ability to provide power for larger communal loads without the requirement for large, dedicated generation by extracting the benefit of usage diversity, and 4) localized control by using the hysteresis-based voltage droop method, thus eliminating the need for a central controller. The proposed microgrid architecture consists of several nanogrids capable of the self-sustained generation, storage, and bidirectional flow of power within the microgrid. Bidirectional power flow and distributed voltage droop control are implemented through the duty cycle control of a modified flyback converter. A detailed analysis in terms of power flow, loss, and system efficiency was conducted by using the Newton-Raphson method modified for dc power flow at varying distribution voltages, conductor sizes, and schemes of interconnection among the contributing nanogrids. A scaled-down version of the proposed architecture with various power sharing scenarios was also implemented on hardware, and yielded satisfactory results.</description><subject>Batteries</subject><subject>Computer architecture</subject><subject>DC microgrids</subject><subject>distributed generation</subject><subject>Distributed power generation</subject><subject>Maximum power point trackers</subject><subject>Microgrids</subject><subject>Newton–Raphson method</subject><subject>rural electrification</subject><subject>Scalability</subject><subject>solar PV</subject><subject>Voltage control</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1OwzAMhSMEEtPYAyBu8gIdTtym6SVsYyANgbbCbZXmZwoK65QMJN6eVpvmC_vI9rGsj5BbBlPGoLqvN_ViyoGVU16iYAIuyIhVeZUhYHl51ry6JpOUvqAPRBQII1JvuqAiff_MHlWyhm60CqoNls5n9NXr2G2jN9R1ka5_ogp0Eaw-RO-8Vgff7ajf0bn9taHb-92Wru22b6YbcuVUSHZyqmPy8bSoZ8_Z6m35MntYZRqRHTIHRhumkXNXFZJJzF3LDFa5dFKbqlBDBqGlQJEXRkDLTT9moIxsuShxTNjxbv9nStG6Zh_9t4p_DYNmINMMZJqBTHMi03vujh5vrT3vSwAuCon_pwheuQ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Nasir, Mashood</creator><creator>Khan, Hassan Abbas</creator><creator>Hussain, Arif</creator><creator>Mateen, Laeeq</creator><creator>Zaffar, Nauman Ahmad</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6854-1581</orcidid><orcidid>https://orcid.org/0000-0003-2847-9773</orcidid></search><sort><creationdate>201801</creationdate><title>Solar PV-Based Scalable DC Microgrid for Rural Electrification in Developing Regions</title><author>Nasir, Mashood ; Khan, Hassan Abbas ; Hussain, Arif ; Mateen, Laeeq ; Zaffar, Nauman Ahmad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-f0dcd1c322f9581834fb1d3948f8cd95a8cd906c863645d60b2dd3910ad8b2673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Computer architecture</topic><topic>DC microgrids</topic><topic>distributed generation</topic><topic>Distributed power generation</topic><topic>Maximum power point trackers</topic><topic>Microgrids</topic><topic>Newton–Raphson method</topic><topic>rural electrification</topic><topic>Scalability</topic><topic>solar PV</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasir, Mashood</creatorcontrib><creatorcontrib>Khan, Hassan Abbas</creatorcontrib><creatorcontrib>Hussain, Arif</creatorcontrib><creatorcontrib>Mateen, Laeeq</creatorcontrib><creatorcontrib>Zaffar, Nauman Ahmad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nasir, Mashood</au><au>Khan, Hassan Abbas</au><au>Hussain, Arif</au><au>Mateen, Laeeq</au><au>Zaffar, Nauman Ahmad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar PV-Based Scalable DC Microgrid for Rural Electrification in Developing Regions</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2018-01</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>390</spage><epage>399</epage><pages>390-399</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>In this paper, we detail the design, analysis, and implementation of a highly distributed off-grid solar photovoltaic dc microgrid architecture suitable for rural electrification in developing countries. The proposed architecture is superior in comparison with existing architectures for rural electrification because of its 1) generation and storage scalability, 2) higher distribution efficiency (because of distributed generation and distributed storage for lower line losses), 3) ability to provide power for larger communal loads without the requirement for large, dedicated generation by extracting the benefit of usage diversity, and 4) localized control by using the hysteresis-based voltage droop method, thus eliminating the need for a central controller. The proposed microgrid architecture consists of several nanogrids capable of the self-sustained generation, storage, and bidirectional flow of power within the microgrid. Bidirectional power flow and distributed voltage droop control are implemented through the duty cycle control of a modified flyback converter. A detailed analysis in terms of power flow, loss, and system efficiency was conducted by using the Newton-Raphson method modified for dc power flow at varying distribution voltages, conductor sizes, and schemes of interconnection among the contributing nanogrids. A scaled-down version of the proposed architecture with various power sharing scenarios was also implemented on hardware, and yielded satisfactory results.</abstract><pub>IEEE</pub><doi>10.1109/TSTE.2017.2736160</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6854-1581</orcidid><orcidid>https://orcid.org/0000-0003-2847-9773</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2018-01, Vol.9 (1), p.390-399
issn 1949-3029
1949-3037
language eng
recordid cdi_crossref_primary_10_1109_TSTE_2017_2736160
source IEEE Electronic Library (IEL)
subjects Batteries
Computer architecture
DC microgrids
distributed generation
Distributed power generation
Maximum power point trackers
Microgrids
Newton–Raphson method
rural electrification
Scalability
solar PV
Voltage control
title Solar PV-Based Scalable DC Microgrid for Rural Electrification in Developing Regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20PV-Based%20Scalable%20DC%20Microgrid%20for%20Rural%20Electrification%20in%20Developing%20Regions&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Nasir,%20Mashood&rft.date=2018-01&rft.volume=9&rft.issue=1&rft.spage=390&rft.epage=399&rft.pages=390-399&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2017.2736160&rft_dat=%3Ccrossref_RIE%3E10_1109_TSTE_2017_2736160%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8002658&rfr_iscdi=true