Energy Management and Control System for Laboratory Scale Microgrid Based Wind-PV-Battery
This paper proposes an energy management and control system for laboratory scale microgrid based on hybrid energy resources such as wind, solar, and battery. Power converters and control algorithms have been used along with dedicated energy resources for the efficient operation of the microgrid. The...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on sustainable energy 2017-01, Vol.8 (1), p.145-154 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes an energy management and control system for laboratory scale microgrid based on hybrid energy resources such as wind, solar, and battery. Power converters and control algorithms have been used along with dedicated energy resources for the efficient operation of the microgrid. The control algorithms are developed to provide power compatibility and energy management between different resources in the microgrid. It provides stable operation of the control in all microgrid subsystems under various power generation and load conditions. The proposed microgrid, based on hybrid energy resources, operates in autonomous mode and has an open architecture platform for testing multiple different control configurations. A real-time control system has been used to operate and validate the hybrid resources in the microgrid experimentally. The proposed laboratory scale microgrid can be used as a benchmark for future research in smart grid applications. |
---|---|
ISSN: | 1949-3029 1949-3037 |
DOI: | 10.1109/TSTE.2016.2587828 |