Wind Turbine Power Curve Modeling Using Advanced Parametric and Nonparametric Methods

Wind turbine power curve modeling is an important tool in turbine performance monitoring and power forecasting. There are several statistical techniques to fit the empirical power curve of a wind turbine, which can be classified into parametric and nonparametric methods. In this paper, we study four...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2014-10, Vol.5 (4), p.1262-1269
Hauptverfasser: Shokrzadeh, Shahab, Jafari Jozani, Mohammad, Bibeau, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1269
container_issue 4
container_start_page 1262
container_title IEEE transactions on sustainable energy
container_volume 5
creator Shokrzadeh, Shahab
Jafari Jozani, Mohammad
Bibeau, Eric
description Wind turbine power curve modeling is an important tool in turbine performance monitoring and power forecasting. There are several statistical techniques to fit the empirical power curve of a wind turbine, which can be classified into parametric and nonparametric methods. In this paper, we study four of these methods to estimate the wind turbine power curve. Polynomial regression is studied as the benchmark parametric model, and issues associated with this technique are discussed. We then introduce the locally weighted polynomial regression method, and show its advantages over the polynomial regression. Also, the spline regression method is examined to achieve more flexibility for fitting the power curve. Finally, we develop a penalized spline regression model to address the issues of choosing the number and location of knots in the spline regression. The performance of the presented methods is evaluated using two simulated data sets as well as an actual operational power data of a wind farm in North America.
doi_str_mv 10.1109/TSTE.2014.2345059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSTE_2014_2345059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6894235</ieee_id><sourcerecordid>3931955471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-d3f5302a39ab7e0596d5a095007aa7e1b2693253f65560312317f872eabc687a3</originalsourceid><addsrcrecordid>eNpFkE1rwzAMhs3YYKXrDxi7GHZOZ1txHB9L6T6g3QpL2NE4ibKltElnJx3790to6XSQhHhfSTyE3HI25Zzph-Q9WUwF4-FUQCiZ1BdkxHWoA2CgLs-90Ndk4v2G9QEAEbARST-quqBJ57KqRrpuftDReecOSFdNgduq_qSpH_KsONg6x4KurbM7bF2VU9tbX5t6_z9ZYfvVFP6GXJV263FyqmOSPi6S-XOwfHt6mc-WQQ5x2AYFlLJ_y4K2mcL-76iQlmnJmLJWIc9EpEFIKCMpIwZcAFdlrATaLI9iZWFM7o9796757tC3ZtN0ru5PGq6kDmMJse5V_KjKXeO9w9LsXbWz7tdwZgaAZgBoBoDmBLD33B09FSKe9VGsQwES_gCpBWrP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759485389</pqid></control><display><type>article</type><title>Wind Turbine Power Curve Modeling Using Advanced Parametric and Nonparametric Methods</title><source>IEEE Electronic Library (IEL)</source><creator>Shokrzadeh, Shahab ; Jafari Jozani, Mohammad ; Bibeau, Eric</creator><creatorcontrib>Shokrzadeh, Shahab ; Jafari Jozani, Mohammad ; Bibeau, Eric</creatorcontrib><description>Wind turbine power curve modeling is an important tool in turbine performance monitoring and power forecasting. There are several statistical techniques to fit the empirical power curve of a wind turbine, which can be classified into parametric and nonparametric methods. In this paper, we study four of these methods to estimate the wind turbine power curve. Polynomial regression is studied as the benchmark parametric model, and issues associated with this technique are discussed. We then introduce the locally weighted polynomial regression method, and show its advantages over the polynomial regression. Also, the spline regression method is examined to achieve more flexibility for fitting the power curve. Finally, we develop a penalized spline regression model to address the issues of choosing the number and location of knots in the spline regression. The performance of the presented methods is evaluated using two simulated data sets as well as an actual operational power data of a wind farm in North America.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2014.2345059</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data models ; Methods ; Nonparametric regression ; penalized spline regression ; polynomial regression ; Polynomials ; Regression analysis ; Splines (mathematics) ; Turbines ; Wind energy ; Wind power generation ; wind turbine power curve ; Wind turbines</subject><ispartof>IEEE transactions on sustainable energy, 2014-10, Vol.5 (4), p.1262-1269</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-d3f5302a39ab7e0596d5a095007aa7e1b2693253f65560312317f872eabc687a3</citedby><cites>FETCH-LOGICAL-c384t-d3f5302a39ab7e0596d5a095007aa7e1b2693253f65560312317f872eabc687a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6894235$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Shokrzadeh, Shahab</creatorcontrib><creatorcontrib>Jafari Jozani, Mohammad</creatorcontrib><creatorcontrib>Bibeau, Eric</creatorcontrib><title>Wind Turbine Power Curve Modeling Using Advanced Parametric and Nonparametric Methods</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>Wind turbine power curve modeling is an important tool in turbine performance monitoring and power forecasting. There are several statistical techniques to fit the empirical power curve of a wind turbine, which can be classified into parametric and nonparametric methods. In this paper, we study four of these methods to estimate the wind turbine power curve. Polynomial regression is studied as the benchmark parametric model, and issues associated with this technique are discussed. We then introduce the locally weighted polynomial regression method, and show its advantages over the polynomial regression. Also, the spline regression method is examined to achieve more flexibility for fitting the power curve. Finally, we develop a penalized spline regression model to address the issues of choosing the number and location of knots in the spline regression. The performance of the presented methods is evaluated using two simulated data sets as well as an actual operational power data of a wind farm in North America.</description><subject>Data models</subject><subject>Methods</subject><subject>Nonparametric regression</subject><subject>penalized spline regression</subject><subject>polynomial regression</subject><subject>Polynomials</subject><subject>Regression analysis</subject><subject>Splines (mathematics)</subject><subject>Turbines</subject><subject>Wind energy</subject><subject>Wind power generation</subject><subject>wind turbine power curve</subject><subject>Wind turbines</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpFkE1rwzAMhs3YYKXrDxi7GHZOZ1txHB9L6T6g3QpL2NE4ibKltElnJx3790to6XSQhHhfSTyE3HI25Zzph-Q9WUwF4-FUQCiZ1BdkxHWoA2CgLs-90Ndk4v2G9QEAEbARST-quqBJ57KqRrpuftDReecOSFdNgduq_qSpH_KsONg6x4KurbM7bF2VU9tbX5t6_z9ZYfvVFP6GXJV263FyqmOSPi6S-XOwfHt6mc-WQQ5x2AYFlLJ_y4K2mcL-76iQlmnJmLJWIc9EpEFIKCMpIwZcAFdlrATaLI9iZWFM7o9796757tC3ZtN0ru5PGq6kDmMJse5V_KjKXeO9w9LsXbWz7tdwZgaAZgBoBoDmBLD33B09FSKe9VGsQwES_gCpBWrP</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Shokrzadeh, Shahab</creator><creator>Jafari Jozani, Mohammad</creator><creator>Bibeau, Eric</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20141001</creationdate><title>Wind Turbine Power Curve Modeling Using Advanced Parametric and Nonparametric Methods</title><author>Shokrzadeh, Shahab ; Jafari Jozani, Mohammad ; Bibeau, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-d3f5302a39ab7e0596d5a095007aa7e1b2693253f65560312317f872eabc687a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Data models</topic><topic>Methods</topic><topic>Nonparametric regression</topic><topic>penalized spline regression</topic><topic>polynomial regression</topic><topic>Polynomials</topic><topic>Regression analysis</topic><topic>Splines (mathematics)</topic><topic>Turbines</topic><topic>Wind energy</topic><topic>Wind power generation</topic><topic>wind turbine power curve</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shokrzadeh, Shahab</creatorcontrib><creatorcontrib>Jafari Jozani, Mohammad</creatorcontrib><creatorcontrib>Bibeau, Eric</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shokrzadeh, Shahab</au><au>Jafari Jozani, Mohammad</au><au>Bibeau, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind Turbine Power Curve Modeling Using Advanced Parametric and Nonparametric Methods</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>5</volume><issue>4</issue><spage>1262</spage><epage>1269</epage><pages>1262-1269</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>Wind turbine power curve modeling is an important tool in turbine performance monitoring and power forecasting. There are several statistical techniques to fit the empirical power curve of a wind turbine, which can be classified into parametric and nonparametric methods. In this paper, we study four of these methods to estimate the wind turbine power curve. Polynomial regression is studied as the benchmark parametric model, and issues associated with this technique are discussed. We then introduce the locally weighted polynomial regression method, and show its advantages over the polynomial regression. Also, the spline regression method is examined to achieve more flexibility for fitting the power curve. Finally, we develop a penalized spline regression model to address the issues of choosing the number and location of knots in the spline regression. The performance of the presented methods is evaluated using two simulated data sets as well as an actual operational power data of a wind farm in North America.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2014.2345059</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2014-10, Vol.5 (4), p.1262-1269
issn 1949-3029
1949-3037
language eng
recordid cdi_crossref_primary_10_1109_TSTE_2014_2345059
source IEEE Electronic Library (IEL)
subjects Data models
Methods
Nonparametric regression
penalized spline regression
polynomial regression
Polynomials
Regression analysis
Splines (mathematics)
Turbines
Wind energy
Wind power generation
wind turbine power curve
Wind turbines
title Wind Turbine Power Curve Modeling Using Advanced Parametric and Nonparametric Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20Turbine%20Power%20Curve%20Modeling%20Using%20Advanced%20Parametric%20and%20Nonparametric%20Methods&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Shokrzadeh,%20Shahab&rft.date=2014-10-01&rft.volume=5&rft.issue=4&rft.spage=1262&rft.epage=1269&rft.pages=1262-1269&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2014.2345059&rft_dat=%3Cproquest_cross%3E3931955471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759485389&rft_id=info:pmid/&rft_ieee_id=6894235&rfr_iscdi=true