Capacity Optimization of Renewable Energy Sources and Battery Storage in an Autonomous Telecommunication Facility

This paper describes a robust optimization approach to minimize the total cost of supplying a remote telecommunication station exclusively by renewable energy sources (RES). Due to the intermittent nature of RES, such as photovoltaic (PV) panels and small wind turbines, they are normally supported b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable energy 2014-10, Vol.5 (4), p.1367-1378
Hauptverfasser: Dragicevic, Tomislav, Pandzic, Hrvoje, Skrlec, Davor, Kuzle, Igor, Guerrero, Josep M., Kirschen, Daniel S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1378
container_issue 4
container_start_page 1367
container_title IEEE transactions on sustainable energy
container_volume 5
creator Dragicevic, Tomislav
Pandzic, Hrvoje
Skrlec, Davor
Kuzle, Igor
Guerrero, Josep M.
Kirschen, Daniel S.
description This paper describes a robust optimization approach to minimize the total cost of supplying a remote telecommunication station exclusively by renewable energy sources (RES). Due to the intermittent nature of RES, such as photovoltaic (PV) panels and small wind turbines, they are normally supported by a central energy storage system (ESS), consisting of a battery and a fuel cell. The optimization is carried out as a robust mixed-integer linear program (RMILP), and results in different optimal solutions, depending on budgets of uncertainty, each of which yields different RES and storage capacities. These solutions are then tested against a set of possible outcomes, thus simulating the future operation of the system. Since battery cycling is inevitable in this application, an algorithm that counts the number of cycles and associated depths of discharges (DoD) is applied to the optimization results. The annual capacity reduction that results from these cycles is calculated for two types of battery technologies, i.e., valve-regulated lead-acid (VRLA) and lithium-ion (Li-ion), and treated as an additional cost. Finally, all associated costs are added up and the ideal configuration is proposed.
doi_str_mv 10.1109/TSTE.2014.2316480
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSTE_2014_2316480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6810894</ieee_id><sourcerecordid>3931955741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-e175338f634c1c0c0d2e52f1f46e77feeca77572623275a5da7f8a42f3d509233</originalsourceid><addsrcrecordid>eNo9UMlqwzAQNaWFhjQfUHoR9JxUmy37mIZ0gUCgcc9ClUfBwbYcSaakX18Fh8xlhsdbmJckjwQvCMHFS7kr1wuKCV9QRjKe45tkQgpezBlm4vZ60-I-mXl_wHEYYxnDk-S4Ur3SdTihbR_qtv5TobYdsgZ9QQe_6qcBtO7A7U9oZwenwSPVVehVhQAuYsE6tQdUdxFGyyHYzrZ28KiEBrRt26Gr9Wj5FmOaGPSQ3BnVeJhd9jT5fluXq4_5Zvv-uVpu5pqnPMyBiJSx3GSMa6KxxhWFlBpieAZCGACthEgFzSijIlVppYTJFaeGVSkuKGPT5Hn07Z09DuCDPMQHuhgpo3XBc1JgEllkZGlnvXdgZO_qVrmTJFiey5XncuW5XHkpN2qeRk0NAFd-lhOcF5z9A3Ikdow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759481901</pqid></control><display><type>article</type><title>Capacity Optimization of Renewable Energy Sources and Battery Storage in an Autonomous Telecommunication Facility</title><source>IEEE Electronic Library (IEL)</source><creator>Dragicevic, Tomislav ; Pandzic, Hrvoje ; Skrlec, Davor ; Kuzle, Igor ; Guerrero, Josep M. ; Kirschen, Daniel S.</creator><creatorcontrib>Dragicevic, Tomislav ; Pandzic, Hrvoje ; Skrlec, Davor ; Kuzle, Igor ; Guerrero, Josep M. ; Kirschen, Daniel S.</creatorcontrib><description>This paper describes a robust optimization approach to minimize the total cost of supplying a remote telecommunication station exclusively by renewable energy sources (RES). Due to the intermittent nature of RES, such as photovoltaic (PV) panels and small wind turbines, they are normally supported by a central energy storage system (ESS), consisting of a battery and a fuel cell. The optimization is carried out as a robust mixed-integer linear program (RMILP), and results in different optimal solutions, depending on budgets of uncertainty, each of which yields different RES and storage capacities. These solutions are then tested against a set of possible outcomes, thus simulating the future operation of the system. Since battery cycling is inevitable in this application, an algorithm that counts the number of cycles and associated depths of discharges (DoD) is applied to the optimization results. The annual capacity reduction that results from these cycles is calculated for two types of battery technologies, i.e., valve-regulated lead-acid (VRLA) and lithium-ion (Li-ion), and treated as an additional cost. Finally, all associated costs are added up and the ideal configuration is proposed.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2014.2316480</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomous power facility ; Batteries ; Energy storage ; energy storage system (ESS) ; Fuel cells ; Mixed integer linear programming ; Optimization ; Renewable energy sources ; renewable energy sources (RES) ; robust mixed-integer linear program (RMILP) ; Wind turbines</subject><ispartof>IEEE transactions on sustainable energy, 2014-10, Vol.5 (4), p.1367-1378</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-e175338f634c1c0c0d2e52f1f46e77feeca77572623275a5da7f8a42f3d509233</citedby><cites>FETCH-LOGICAL-c454t-e175338f634c1c0c0d2e52f1f46e77feeca77572623275a5da7f8a42f3d509233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6810894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6810894$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dragicevic, Tomislav</creatorcontrib><creatorcontrib>Pandzic, Hrvoje</creatorcontrib><creatorcontrib>Skrlec, Davor</creatorcontrib><creatorcontrib>Kuzle, Igor</creatorcontrib><creatorcontrib>Guerrero, Josep M.</creatorcontrib><creatorcontrib>Kirschen, Daniel S.</creatorcontrib><title>Capacity Optimization of Renewable Energy Sources and Battery Storage in an Autonomous Telecommunication Facility</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>This paper describes a robust optimization approach to minimize the total cost of supplying a remote telecommunication station exclusively by renewable energy sources (RES). Due to the intermittent nature of RES, such as photovoltaic (PV) panels and small wind turbines, they are normally supported by a central energy storage system (ESS), consisting of a battery and a fuel cell. The optimization is carried out as a robust mixed-integer linear program (RMILP), and results in different optimal solutions, depending on budgets of uncertainty, each of which yields different RES and storage capacities. These solutions are then tested against a set of possible outcomes, thus simulating the future operation of the system. Since battery cycling is inevitable in this application, an algorithm that counts the number of cycles and associated depths of discharges (DoD) is applied to the optimization results. The annual capacity reduction that results from these cycles is calculated for two types of battery technologies, i.e., valve-regulated lead-acid (VRLA) and lithium-ion (Li-ion), and treated as an additional cost. Finally, all associated costs are added up and the ideal configuration is proposed.</description><subject>Autonomous power facility</subject><subject>Batteries</subject><subject>Energy storage</subject><subject>energy storage system (ESS)</subject><subject>Fuel cells</subject><subject>Mixed integer linear programming</subject><subject>Optimization</subject><subject>Renewable energy sources</subject><subject>renewable energy sources (RES)</subject><subject>robust mixed-integer linear program (RMILP)</subject><subject>Wind turbines</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMlqwzAQNaWFhjQfUHoR9JxUmy37mIZ0gUCgcc9ClUfBwbYcSaakX18Fh8xlhsdbmJckjwQvCMHFS7kr1wuKCV9QRjKe45tkQgpezBlm4vZ60-I-mXl_wHEYYxnDk-S4Ur3SdTihbR_qtv5TobYdsgZ9QQe_6qcBtO7A7U9oZwenwSPVVehVhQAuYsE6tQdUdxFGyyHYzrZ28KiEBrRt26Gr9Wj5FmOaGPSQ3BnVeJhd9jT5fluXq4_5Zvv-uVpu5pqnPMyBiJSx3GSMa6KxxhWFlBpieAZCGACthEgFzSijIlVppYTJFaeGVSkuKGPT5Hn07Z09DuCDPMQHuhgpo3XBc1JgEllkZGlnvXdgZO_qVrmTJFiey5XncuW5XHkpN2qeRk0NAFd-lhOcF5z9A3Ikdow</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Dragicevic, Tomislav</creator><creator>Pandzic, Hrvoje</creator><creator>Skrlec, Davor</creator><creator>Kuzle, Igor</creator><creator>Guerrero, Josep M.</creator><creator>Kirschen, Daniel S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20141001</creationdate><title>Capacity Optimization of Renewable Energy Sources and Battery Storage in an Autonomous Telecommunication Facility</title><author>Dragicevic, Tomislav ; Pandzic, Hrvoje ; Skrlec, Davor ; Kuzle, Igor ; Guerrero, Josep M. ; Kirschen, Daniel S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-e175338f634c1c0c0d2e52f1f46e77feeca77572623275a5da7f8a42f3d509233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Autonomous power facility</topic><topic>Batteries</topic><topic>Energy storage</topic><topic>energy storage system (ESS)</topic><topic>Fuel cells</topic><topic>Mixed integer linear programming</topic><topic>Optimization</topic><topic>Renewable energy sources</topic><topic>renewable energy sources (RES)</topic><topic>robust mixed-integer linear program (RMILP)</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dragicevic, Tomislav</creatorcontrib><creatorcontrib>Pandzic, Hrvoje</creatorcontrib><creatorcontrib>Skrlec, Davor</creatorcontrib><creatorcontrib>Kuzle, Igor</creatorcontrib><creatorcontrib>Guerrero, Josep M.</creatorcontrib><creatorcontrib>Kirschen, Daniel S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dragicevic, Tomislav</au><au>Pandzic, Hrvoje</au><au>Skrlec, Davor</au><au>Kuzle, Igor</au><au>Guerrero, Josep M.</au><au>Kirschen, Daniel S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity Optimization of Renewable Energy Sources and Battery Storage in an Autonomous Telecommunication Facility</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>5</volume><issue>4</issue><spage>1367</spage><epage>1378</epage><pages>1367-1378</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>This paper describes a robust optimization approach to minimize the total cost of supplying a remote telecommunication station exclusively by renewable energy sources (RES). Due to the intermittent nature of RES, such as photovoltaic (PV) panels and small wind turbines, they are normally supported by a central energy storage system (ESS), consisting of a battery and a fuel cell. The optimization is carried out as a robust mixed-integer linear program (RMILP), and results in different optimal solutions, depending on budgets of uncertainty, each of which yields different RES and storage capacities. These solutions are then tested against a set of possible outcomes, thus simulating the future operation of the system. Since battery cycling is inevitable in this application, an algorithm that counts the number of cycles and associated depths of discharges (DoD) is applied to the optimization results. The annual capacity reduction that results from these cycles is calculated for two types of battery technologies, i.e., valve-regulated lead-acid (VRLA) and lithium-ion (Li-ion), and treated as an additional cost. Finally, all associated costs are added up and the ideal configuration is proposed.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2014.2316480</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2014-10, Vol.5 (4), p.1367-1378
issn 1949-3029
1949-3037
language eng
recordid cdi_crossref_primary_10_1109_TSTE_2014_2316480
source IEEE Electronic Library (IEL)
subjects Autonomous power facility
Batteries
Energy storage
energy storage system (ESS)
Fuel cells
Mixed integer linear programming
Optimization
Renewable energy sources
renewable energy sources (RES)
robust mixed-integer linear program (RMILP)
Wind turbines
title Capacity Optimization of Renewable Energy Sources and Battery Storage in an Autonomous Telecommunication Facility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity%20Optimization%20of%20Renewable%20Energy%20Sources%20and%20Battery%20Storage%20in%20an%20Autonomous%20Telecommunication%20Facility&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Dragicevic,%20Tomislav&rft.date=2014-10-01&rft.volume=5&rft.issue=4&rft.spage=1367&rft.epage=1378&rft.pages=1367-1378&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2014.2316480&rft_dat=%3Cproquest_RIE%3E3931955741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759481901&rft_id=info:pmid/&rft_ieee_id=6810894&rfr_iscdi=true