A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques

We focus on the problem of finding optimal sensor locations for source localization techniques based on either time of arrival (TOA) or received signal strength (RSS) measurements. Without any specific assumption on the actual source position, we propose a design framework that directly establishes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2023-01, Vol.71, p.1-14
Hauptverfasser: Aubry, Augusto, Babu, Prabhu, De Maio, Antonio, Fatima, Ghania, Sahu, Nitesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on signal processing
container_volume 71
creator Aubry, Augusto
Babu, Prabhu
De Maio, Antonio
Fatima, Ghania
Sahu, Nitesh
description We focus on the problem of finding optimal sensor locations for source localization techniques based on either time of arrival (TOA) or received signal strength (RSS) measurements. Without any specific assumption on the actual source position, we propose a design framework that directly establishes the optimal sensor locations by minimizing suitable Cramer-Rao bound (CRB)-related cost functions. Specifically, we just consider a region where the source is likely to be present and focus on two cost functions: the former relies on the trace/determinant of CRB averaged over a grid of points resulting from the sampling of the surveillance area (shortly average CRB), whereas, the latter leverages the maximum trace/determinant of CRB over the mentioned grid (shortly worst-case CRB). Moreover, each sensor position is constrained to lie within a pre-specified set (deployment constraint set). Hence, we propose an optimization framework based on block majorization-minimization to deal with both the design paradigms. The iterative steps of the technique monotonically decrease the corresponding figure of merit and eventually converge to a stationary point of the design problem. The proposed methodology can also handle the case of nonuniform noise variances. Finally, through various numerical simulations, we show the effectiveness of the developed resource allocation policies.
doi_str_mv 10.1109/TSP.2023.3262182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2023_3262182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10081431</ieee_id><sourcerecordid>2806222601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-cc9e17f28a974589b363de27eb8e6151517c471e968191c76db7b74c587c27333</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgrd49eAh43pqvzcexVKtCodJdwVvYTae6td3UZIvorzf9OMgcZoZ5M2_eQ-iakgGlxNyVxcuAEcYHnElGNTtBPWoEzYhQ8jTVJOdZrtXbObqIcUkIFcLIHnJDPPP1NnZ4HKo1fPvwiTuP7yE27y2ebrpmXa1wAW30AU-8q7rGtxEvUldOhzilWVHgwm-Dg_181fzuMbgE99E2X1uIl-hsUa0iXB1zH72OH8rRUzaZPj6PhpPMcS66zDkDVC2YrowSuTY1l3wOTEGtQdI8hXJCUTBSU0OdkvNa1Uq4pMoxxTnvo9vD3U3wO97OLtNfbaK0TBPJGJOEJhQ5oFzwMQZY2E1IIsOPpcTurLTJSruz0h6tTCs3h5UGAP7BiaaCU_4H-jZucw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806222601</pqid></control><display><type>article</type><title>A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques</title><source>IEEE Xplore</source><creator>Aubry, Augusto ; Babu, Prabhu ; De Maio, Antonio ; Fatima, Ghania ; Sahu, Nitesh</creator><creatorcontrib>Aubry, Augusto ; Babu, Prabhu ; De Maio, Antonio ; Fatima, Ghania ; Sahu, Nitesh</creatorcontrib><description>We focus on the problem of finding optimal sensor locations for source localization techniques based on either time of arrival (TOA) or received signal strength (RSS) measurements. Without any specific assumption on the actual source position, we propose a design framework that directly establishes the optimal sensor locations by minimizing suitable Cramer-Rao bound (CRB)-related cost functions. Specifically, we just consider a region where the source is likely to be present and focus on two cost functions: the former relies on the trace/determinant of CRB averaged over a grid of points resulting from the sampling of the surveillance area (shortly average CRB), whereas, the latter leverages the maximum trace/determinant of CRB over the mentioned grid (shortly worst-case CRB). Moreover, each sensor position is constrained to lie within a pre-specified set (deployment constraint set). Hence, we propose an optimization framework based on block majorization-minimization to deal with both the design paradigms. The iterative steps of the technique monotonically decrease the corresponding figure of merit and eventually converge to a stationary point of the design problem. The proposed methodology can also handle the case of nonuniform noise variances. Finally, through various numerical simulations, we show the effectiveness of the developed resource allocation policies.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3262182</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Constraints ; Cost function ; Cramer-Rao bounds ; Figure of merit ; Geometry ; Iterative methods ; Localization ; Location awareness ; majorization-minimization ; Measurement ; Noise measurement ; Optimal sensor placement ; Optimization ; Position measurement ; Position sensing ; received signal strength ; Resource allocation ; Robustness (mathematics) ; Sensor placement ; Sensors ; Signal strength ; source localization ; Three-dimensional displays ; time of arrival</subject><ispartof>IEEE transactions on signal processing, 2023-01, Vol.71, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-cc9e17f28a974589b363de27eb8e6151517c471e968191c76db7b74c587c27333</citedby><cites>FETCH-LOGICAL-c334t-cc9e17f28a974589b363de27eb8e6151517c471e968191c76db7b74c587c27333</cites><orcidid>0000-0002-5353-0481 ; 0000-0001-7859-9699 ; 0000-0001-8421-3318 ; 0000-0002-9041-9010 ; 0000-0001-8268-0545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10081431$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids></links><search><creatorcontrib>Aubry, Augusto</creatorcontrib><creatorcontrib>Babu, Prabhu</creatorcontrib><creatorcontrib>De Maio, Antonio</creatorcontrib><creatorcontrib>Fatima, Ghania</creatorcontrib><creatorcontrib>Sahu, Nitesh</creatorcontrib><title>A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We focus on the problem of finding optimal sensor locations for source localization techniques based on either time of arrival (TOA) or received signal strength (RSS) measurements. Without any specific assumption on the actual source position, we propose a design framework that directly establishes the optimal sensor locations by minimizing suitable Cramer-Rao bound (CRB)-related cost functions. Specifically, we just consider a region where the source is likely to be present and focus on two cost functions: the former relies on the trace/determinant of CRB averaged over a grid of points resulting from the sampling of the surveillance area (shortly average CRB), whereas, the latter leverages the maximum trace/determinant of CRB over the mentioned grid (shortly worst-case CRB). Moreover, each sensor position is constrained to lie within a pre-specified set (deployment constraint set). Hence, we propose an optimization framework based on block majorization-minimization to deal with both the design paradigms. The iterative steps of the technique monotonically decrease the corresponding figure of merit and eventually converge to a stationary point of the design problem. The proposed methodology can also handle the case of nonuniform noise variances. Finally, through various numerical simulations, we show the effectiveness of the developed resource allocation policies.</description><subject>Constraints</subject><subject>Cost function</subject><subject>Cramer-Rao bounds</subject><subject>Figure of merit</subject><subject>Geometry</subject><subject>Iterative methods</subject><subject>Localization</subject><subject>Location awareness</subject><subject>majorization-minimization</subject><subject>Measurement</subject><subject>Noise measurement</subject><subject>Optimal sensor placement</subject><subject>Optimization</subject><subject>Position measurement</subject><subject>Position sensing</subject><subject>received signal strength</subject><subject>Resource allocation</subject><subject>Robustness (mathematics)</subject><subject>Sensor placement</subject><subject>Sensors</subject><subject>Signal strength</subject><subject>source localization</subject><subject>Three-dimensional displays</subject><subject>time of arrival</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNUE1LAzEQDaJgrd49eAh43pqvzcexVKtCodJdwVvYTae6td3UZIvorzf9OMgcZoZ5M2_eQ-iakgGlxNyVxcuAEcYHnElGNTtBPWoEzYhQ8jTVJOdZrtXbObqIcUkIFcLIHnJDPPP1NnZ4HKo1fPvwiTuP7yE27y2ebrpmXa1wAW30AU-8q7rGtxEvUldOhzilWVHgwm-Dg_181fzuMbgE99E2X1uIl-hsUa0iXB1zH72OH8rRUzaZPj6PhpPMcS66zDkDVC2YrowSuTY1l3wOTEGtQdI8hXJCUTBSU0OdkvNa1Uq4pMoxxTnvo9vD3U3wO97OLtNfbaK0TBPJGJOEJhQ5oFzwMQZY2E1IIsOPpcTurLTJSruz0h6tTCs3h5UGAP7BiaaCU_4H-jZucw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Aubry, Augusto</creator><creator>Babu, Prabhu</creator><creator>De Maio, Antonio</creator><creator>Fatima, Ghania</creator><creator>Sahu, Nitesh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5353-0481</orcidid><orcidid>https://orcid.org/0000-0001-7859-9699</orcidid><orcidid>https://orcid.org/0000-0001-8421-3318</orcidid><orcidid>https://orcid.org/0000-0002-9041-9010</orcidid><orcidid>https://orcid.org/0000-0001-8268-0545</orcidid></search><sort><creationdate>20230101</creationdate><title>A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques</title><author>Aubry, Augusto ; Babu, Prabhu ; De Maio, Antonio ; Fatima, Ghania ; Sahu, Nitesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-cc9e17f28a974589b363de27eb8e6151517c471e968191c76db7b74c587c27333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Constraints</topic><topic>Cost function</topic><topic>Cramer-Rao bounds</topic><topic>Figure of merit</topic><topic>Geometry</topic><topic>Iterative methods</topic><topic>Localization</topic><topic>Location awareness</topic><topic>majorization-minimization</topic><topic>Measurement</topic><topic>Noise measurement</topic><topic>Optimal sensor placement</topic><topic>Optimization</topic><topic>Position measurement</topic><topic>Position sensing</topic><topic>received signal strength</topic><topic>Resource allocation</topic><topic>Robustness (mathematics)</topic><topic>Sensor placement</topic><topic>Sensors</topic><topic>Signal strength</topic><topic>source localization</topic><topic>Three-dimensional displays</topic><topic>time of arrival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aubry, Augusto</creatorcontrib><creatorcontrib>Babu, Prabhu</creatorcontrib><creatorcontrib>De Maio, Antonio</creatorcontrib><creatorcontrib>Fatima, Ghania</creatorcontrib><creatorcontrib>Sahu, Nitesh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aubry, Augusto</au><au>Babu, Prabhu</au><au>De Maio, Antonio</au><au>Fatima, Ghania</au><au>Sahu, Nitesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>71</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We focus on the problem of finding optimal sensor locations for source localization techniques based on either time of arrival (TOA) or received signal strength (RSS) measurements. Without any specific assumption on the actual source position, we propose a design framework that directly establishes the optimal sensor locations by minimizing suitable Cramer-Rao bound (CRB)-related cost functions. Specifically, we just consider a region where the source is likely to be present and focus on two cost functions: the former relies on the trace/determinant of CRB averaged over a grid of points resulting from the sampling of the surveillance area (shortly average CRB), whereas, the latter leverages the maximum trace/determinant of CRB over the mentioned grid (shortly worst-case CRB). Moreover, each sensor position is constrained to lie within a pre-specified set (deployment constraint set). Hence, we propose an optimization framework based on block majorization-minimization to deal with both the design paradigms. The iterative steps of the technique monotonically decrease the corresponding figure of merit and eventually converge to a stationary point of the design problem. The proposed methodology can also handle the case of nonuniform noise variances. Finally, through various numerical simulations, we show the effectiveness of the developed resource allocation policies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3262182</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5353-0481</orcidid><orcidid>https://orcid.org/0000-0001-7859-9699</orcidid><orcidid>https://orcid.org/0000-0001-8421-3318</orcidid><orcidid>https://orcid.org/0000-0002-9041-9010</orcidid><orcidid>https://orcid.org/0000-0001-8268-0545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2023-01, Vol.71, p.1-14
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2023_3262182
source IEEE Xplore
subjects Constraints
Cost function
Cramer-Rao bounds
Figure of merit
Geometry
Iterative methods
Localization
Location awareness
majorization-minimization
Measurement
Noise measurement
Optimal sensor placement
Optimization
Position measurement
Position sensing
received signal strength
Resource allocation
Robustness (mathematics)
Sensor placement
Sensors
Signal strength
source localization
Three-dimensional displays
time of arrival
title A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Framework%20to%20Design%20Optimal%20Sensor%20Locations%20for%20TOA%20or%20RSS%20Source%20Localization%20Techniques&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Aubry,%20Augusto&rft.date=2023-01-01&rft.volume=71&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3262182&rft_dat=%3Cproquest_cross%3E2806222601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806222601&rft_id=info:pmid/&rft_ieee_id=10081431&rfr_iscdi=true