A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques
We focus on the problem of finding optimal sensor locations for source localization techniques based on either time of arrival (TOA) or received signal strength (RSS) measurements. Without any specific assumption on the actual source position, we propose a design framework that directly establishes...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2023-01, Vol.71, p.1-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on signal processing |
container_volume | 71 |
creator | Aubry, Augusto Babu, Prabhu De Maio, Antonio Fatima, Ghania Sahu, Nitesh |
description | We focus on the problem of finding optimal sensor locations for source localization techniques based on either time of arrival (TOA) or received signal strength (RSS) measurements. Without any specific assumption on the actual source position, we propose a design framework that directly establishes the optimal sensor locations by minimizing suitable Cramer-Rao bound (CRB)-related cost functions. Specifically, we just consider a region where the source is likely to be present and focus on two cost functions: the former relies on the trace/determinant of CRB averaged over a grid of points resulting from the sampling of the surveillance area (shortly average CRB), whereas, the latter leverages the maximum trace/determinant of CRB over the mentioned grid (shortly worst-case CRB). Moreover, each sensor position is constrained to lie within a pre-specified set (deployment constraint set). Hence, we propose an optimization framework based on block majorization-minimization to deal with both the design paradigms. The iterative steps of the technique monotonically decrease the corresponding figure of merit and eventually converge to a stationary point of the design problem. The proposed methodology can also handle the case of nonuniform noise variances. Finally, through various numerical simulations, we show the effectiveness of the developed resource allocation policies. |
doi_str_mv | 10.1109/TSP.2023.3262182 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2023_3262182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10081431</ieee_id><sourcerecordid>2806222601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-cc9e17f28a974589b363de27eb8e6151517c471e968191c76db7b74c587c27333</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgrd49eAh43pqvzcexVKtCodJdwVvYTae6td3UZIvorzf9OMgcZoZ5M2_eQ-iakgGlxNyVxcuAEcYHnElGNTtBPWoEzYhQ8jTVJOdZrtXbObqIcUkIFcLIHnJDPPP1NnZ4HKo1fPvwiTuP7yE27y2ebrpmXa1wAW30AU-8q7rGtxEvUldOhzilWVHgwm-Dg_181fzuMbgE99E2X1uIl-hsUa0iXB1zH72OH8rRUzaZPj6PhpPMcS66zDkDVC2YrowSuTY1l3wOTEGtQdI8hXJCUTBSU0OdkvNa1Uq4pMoxxTnvo9vD3U3wO97OLtNfbaK0TBPJGJOEJhQ5oFzwMQZY2E1IIsOPpcTurLTJSruz0h6tTCs3h5UGAP7BiaaCU_4H-jZucw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806222601</pqid></control><display><type>article</type><title>A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques</title><source>IEEE Xplore</source><creator>Aubry, Augusto ; Babu, Prabhu ; De Maio, Antonio ; Fatima, Ghania ; Sahu, Nitesh</creator><creatorcontrib>Aubry, Augusto ; Babu, Prabhu ; De Maio, Antonio ; Fatima, Ghania ; Sahu, Nitesh</creatorcontrib><description>We focus on the problem of finding optimal sensor locations for source localization techniques based on either time of arrival (TOA) or received signal strength (RSS) measurements. Without any specific assumption on the actual source position, we propose a design framework that directly establishes the optimal sensor locations by minimizing suitable Cramer-Rao bound (CRB)-related cost functions. Specifically, we just consider a region where the source is likely to be present and focus on two cost functions: the former relies on the trace/determinant of CRB averaged over a grid of points resulting from the sampling of the surveillance area (shortly average CRB), whereas, the latter leverages the maximum trace/determinant of CRB over the mentioned grid (shortly worst-case CRB). Moreover, each sensor position is constrained to lie within a pre-specified set (deployment constraint set). Hence, we propose an optimization framework based on block majorization-minimization to deal with both the design paradigms. The iterative steps of the technique monotonically decrease the corresponding figure of merit and eventually converge to a stationary point of the design problem. The proposed methodology can also handle the case of nonuniform noise variances. Finally, through various numerical simulations, we show the effectiveness of the developed resource allocation policies.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3262182</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Constraints ; Cost function ; Cramer-Rao bounds ; Figure of merit ; Geometry ; Iterative methods ; Localization ; Location awareness ; majorization-minimization ; Measurement ; Noise measurement ; Optimal sensor placement ; Optimization ; Position measurement ; Position sensing ; received signal strength ; Resource allocation ; Robustness (mathematics) ; Sensor placement ; Sensors ; Signal strength ; source localization ; Three-dimensional displays ; time of arrival</subject><ispartof>IEEE transactions on signal processing, 2023-01, Vol.71, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-cc9e17f28a974589b363de27eb8e6151517c471e968191c76db7b74c587c27333</citedby><cites>FETCH-LOGICAL-c334t-cc9e17f28a974589b363de27eb8e6151517c471e968191c76db7b74c587c27333</cites><orcidid>0000-0002-5353-0481 ; 0000-0001-7859-9699 ; 0000-0001-8421-3318 ; 0000-0002-9041-9010 ; 0000-0001-8268-0545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10081431$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids></links><search><creatorcontrib>Aubry, Augusto</creatorcontrib><creatorcontrib>Babu, Prabhu</creatorcontrib><creatorcontrib>De Maio, Antonio</creatorcontrib><creatorcontrib>Fatima, Ghania</creatorcontrib><creatorcontrib>Sahu, Nitesh</creatorcontrib><title>A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We focus on the problem of finding optimal sensor locations for source localization techniques based on either time of arrival (TOA) or received signal strength (RSS) measurements. Without any specific assumption on the actual source position, we propose a design framework that directly establishes the optimal sensor locations by minimizing suitable Cramer-Rao bound (CRB)-related cost functions. Specifically, we just consider a region where the source is likely to be present and focus on two cost functions: the former relies on the trace/determinant of CRB averaged over a grid of points resulting from the sampling of the surveillance area (shortly average CRB), whereas, the latter leverages the maximum trace/determinant of CRB over the mentioned grid (shortly worst-case CRB). Moreover, each sensor position is constrained to lie within a pre-specified set (deployment constraint set). Hence, we propose an optimization framework based on block majorization-minimization to deal with both the design paradigms. The iterative steps of the technique monotonically decrease the corresponding figure of merit and eventually converge to a stationary point of the design problem. The proposed methodology can also handle the case of nonuniform noise variances. Finally, through various numerical simulations, we show the effectiveness of the developed resource allocation policies.</description><subject>Constraints</subject><subject>Cost function</subject><subject>Cramer-Rao bounds</subject><subject>Figure of merit</subject><subject>Geometry</subject><subject>Iterative methods</subject><subject>Localization</subject><subject>Location awareness</subject><subject>majorization-minimization</subject><subject>Measurement</subject><subject>Noise measurement</subject><subject>Optimal sensor placement</subject><subject>Optimization</subject><subject>Position measurement</subject><subject>Position sensing</subject><subject>received signal strength</subject><subject>Resource allocation</subject><subject>Robustness (mathematics)</subject><subject>Sensor placement</subject><subject>Sensors</subject><subject>Signal strength</subject><subject>source localization</subject><subject>Three-dimensional displays</subject><subject>time of arrival</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNUE1LAzEQDaJgrd49eAh43pqvzcexVKtCodJdwVvYTae6td3UZIvorzf9OMgcZoZ5M2_eQ-iakgGlxNyVxcuAEcYHnElGNTtBPWoEzYhQ8jTVJOdZrtXbObqIcUkIFcLIHnJDPPP1NnZ4HKo1fPvwiTuP7yE27y2ebrpmXa1wAW30AU-8q7rGtxEvUldOhzilWVHgwm-Dg_181fzuMbgE99E2X1uIl-hsUa0iXB1zH72OH8rRUzaZPj6PhpPMcS66zDkDVC2YrowSuTY1l3wOTEGtQdI8hXJCUTBSU0OdkvNa1Uq4pMoxxTnvo9vD3U3wO97OLtNfbaK0TBPJGJOEJhQ5oFzwMQZY2E1IIsOPpcTurLTJSruz0h6tTCs3h5UGAP7BiaaCU_4H-jZucw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Aubry, Augusto</creator><creator>Babu, Prabhu</creator><creator>De Maio, Antonio</creator><creator>Fatima, Ghania</creator><creator>Sahu, Nitesh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5353-0481</orcidid><orcidid>https://orcid.org/0000-0001-7859-9699</orcidid><orcidid>https://orcid.org/0000-0001-8421-3318</orcidid><orcidid>https://orcid.org/0000-0002-9041-9010</orcidid><orcidid>https://orcid.org/0000-0001-8268-0545</orcidid></search><sort><creationdate>20230101</creationdate><title>A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques</title><author>Aubry, Augusto ; Babu, Prabhu ; De Maio, Antonio ; Fatima, Ghania ; Sahu, Nitesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-cc9e17f28a974589b363de27eb8e6151517c471e968191c76db7b74c587c27333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Constraints</topic><topic>Cost function</topic><topic>Cramer-Rao bounds</topic><topic>Figure of merit</topic><topic>Geometry</topic><topic>Iterative methods</topic><topic>Localization</topic><topic>Location awareness</topic><topic>majorization-minimization</topic><topic>Measurement</topic><topic>Noise measurement</topic><topic>Optimal sensor placement</topic><topic>Optimization</topic><topic>Position measurement</topic><topic>Position sensing</topic><topic>received signal strength</topic><topic>Resource allocation</topic><topic>Robustness (mathematics)</topic><topic>Sensor placement</topic><topic>Sensors</topic><topic>Signal strength</topic><topic>source localization</topic><topic>Three-dimensional displays</topic><topic>time of arrival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aubry, Augusto</creatorcontrib><creatorcontrib>Babu, Prabhu</creatorcontrib><creatorcontrib>De Maio, Antonio</creatorcontrib><creatorcontrib>Fatima, Ghania</creatorcontrib><creatorcontrib>Sahu, Nitesh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aubry, Augusto</au><au>Babu, Prabhu</au><au>De Maio, Antonio</au><au>Fatima, Ghania</au><au>Sahu, Nitesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>71</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We focus on the problem of finding optimal sensor locations for source localization techniques based on either time of arrival (TOA) or received signal strength (RSS) measurements. Without any specific assumption on the actual source position, we propose a design framework that directly establishes the optimal sensor locations by minimizing suitable Cramer-Rao bound (CRB)-related cost functions. Specifically, we just consider a region where the source is likely to be present and focus on two cost functions: the former relies on the trace/determinant of CRB averaged over a grid of points resulting from the sampling of the surveillance area (shortly average CRB), whereas, the latter leverages the maximum trace/determinant of CRB over the mentioned grid (shortly worst-case CRB). Moreover, each sensor position is constrained to lie within a pre-specified set (deployment constraint set). Hence, we propose an optimization framework based on block majorization-minimization to deal with both the design paradigms. The iterative steps of the technique monotonically decrease the corresponding figure of merit and eventually converge to a stationary point of the design problem. The proposed methodology can also handle the case of nonuniform noise variances. Finally, through various numerical simulations, we show the effectiveness of the developed resource allocation policies.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3262182</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5353-0481</orcidid><orcidid>https://orcid.org/0000-0001-7859-9699</orcidid><orcidid>https://orcid.org/0000-0001-8421-3318</orcidid><orcidid>https://orcid.org/0000-0002-9041-9010</orcidid><orcidid>https://orcid.org/0000-0001-8268-0545</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2023-01, Vol.71, p.1-14 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2023_3262182 |
source | IEEE Xplore |
subjects | Constraints Cost function Cramer-Rao bounds Figure of merit Geometry Iterative methods Localization Location awareness majorization-minimization Measurement Noise measurement Optimal sensor placement Optimization Position measurement Position sensing received signal strength Resource allocation Robustness (mathematics) Sensor placement Sensors Signal strength source localization Three-dimensional displays time of arrival |
title | A Robust Framework to Design Optimal Sensor Locations for TOA or RSS Source Localization Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Framework%20to%20Design%20Optimal%20Sensor%20Locations%20for%20TOA%20or%20RSS%20Source%20Localization%20Techniques&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Aubry,%20Augusto&rft.date=2023-01-01&rft.volume=71&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3262182&rft_dat=%3Cproquest_cross%3E2806222601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2806222601&rft_id=info:pmid/&rft_ieee_id=10081431&rfr_iscdi=true |