User Activity Detection for Irregular Repetition Slotted Aloha Based MMTC
Irregular repetition slotted aloha (IRSA) is a grant-free random access protocol for massive machine-type communications, in which users transmit replicas of their packet in randomly selected resource blocks within a frame. In this paper, we first develop a novel Bayesian user activity detection (UA...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2022, Vol.70, p.3616-3631 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3631 |
---|---|
container_issue | |
container_start_page | 3616 |
container_title | IEEE transactions on signal processing |
container_volume | 70 |
creator | Srivatsa, Chirag Ramesh Murthy, Chandra R. |
description | Irregular repetition slotted aloha (IRSA) is a grant-free random access protocol for massive machine-type communications, in which users transmit replicas of their packet in randomly selected resource blocks within a frame. In this paper, we first develop a novel Bayesian user activity detection (UAD) algorithm for IRSA, which exploits both the sparsity in user activity as well as the underlying structure of IRSA transmissions. Next, we derive the Cramér-Rao bound (CRB) on the mean squared error in channel estimation. We empirically show that the channel estimates obtained as a by-product of the proposed UAD algorithm achieves the CRB. Then, we analyze the signal to interference plus noise ratio achieved by the users, accounting for UAD, channel estimation errors, and pilot contamination. Finally, we illustrate the impact of these non-idealities on the throughput of IRSA via Monte Carlo simulations. For example, in a system with 1500 users and 10% of the users being active per frame, a pilot length of as low as 20 symbols is sufficient for accurate user activity detection. In contrast, using classical compressed sensing approaches for UAD would require a pilot length of about 346 symbols. Our results reveal crucial insights into dependence of UAD errors and throughput on parameters such as the length of the pilot sequence, the number of antennas at the BS, the number of users, and the signal to noise ratio. |
doi_str_mv | 10.1109/TSP.2022.3185891 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2022_3185891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9805696</ieee_id><sourcerecordid>2691865871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-433c3640fd5c686744a32c6526a8f5df2e2ac02a6edc8e7d6d687b080a8f8efe3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC56353uRY61ehRbEteAsxO6tb1qYmqdD_3tQWT_PgvTfD_BC6JHhACNY389nLgGJKB4wooTQ5Qj2iOSkxr-Rx1liwUqjq7RSdxbjEmHCuZQ-NFxFCMXSp_WnTtriDBFn7VdH4UIxDgI9NZ0PxCmtI7Z8x63xKUBfDzn_a4tbGrKfT-egcnTS2i3BxmH20eLifj57KyfPjeDSclI5qkkrOmGOS46YWTipZcW4ZdVJQaVUj6oYCtQ5TK6F2Cqpa1lJV71jhbCtogPXR9X7vOvjvDcRkln4TVvmkoVITJfOXJKfwPuWCjzFAY9ah_bJhawg2O2AmAzM7YOYALFeu9pUWAP7jWmEhtWS_yZVmXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691865871</pqid></control><display><type>article</type><title>User Activity Detection for Irregular Repetition Slotted Aloha Based MMTC</title><source>IEEE</source><creator>Srivatsa, Chirag Ramesh ; Murthy, Chandra R.</creator><creatorcontrib>Srivatsa, Chirag Ramesh ; Murthy, Chandra R.</creatorcontrib><description>Irregular repetition slotted aloha (IRSA) is a grant-free random access protocol for massive machine-type communications, in which users transmit replicas of their packet in randomly selected resource blocks within a frame. In this paper, we first develop a novel Bayesian user activity detection (UAD) algorithm for IRSA, which exploits both the sparsity in user activity as well as the underlying structure of IRSA transmissions. Next, we derive the Cramér-Rao bound (CRB) on the mean squared error in channel estimation. We empirically show that the channel estimates obtained as a by-product of the proposed UAD algorithm achieves the CRB. Then, we analyze the signal to interference plus noise ratio achieved by the users, accounting for UAD, channel estimation errors, and pilot contamination. Finally, we illustrate the impact of these non-idealities on the throughput of IRSA via Monte Carlo simulations. For example, in a system with 1500 users and 10% of the users being active per frame, a pilot length of as low as 20 symbols is sufficient for accurate user activity detection. In contrast, using classical compressed sensing approaches for UAD would require a pilot length of about 346 symbols. Our results reveal crucial insights into dependence of UAD errors and throughput on parameters such as the length of the pilot sequence, the number of antennas at the BS, the number of users, and the signal to noise ratio.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2022.3185891</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Channel estimation ; Contamination ; Decoding ; Errors ; grant-free random access ; irregular repetition slotted aloha ; massive machine-type communications ; Random access ; Repetition ; Signal processing algorithms ; Signal to noise ratio ; Symbols ; Throughput ; user activity detection</subject><ispartof>IEEE transactions on signal processing, 2022, Vol.70, p.3616-3631</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-433c3640fd5c686744a32c6526a8f5df2e2ac02a6edc8e7d6d687b080a8f8efe3</citedby><cites>FETCH-LOGICAL-c291t-433c3640fd5c686744a32c6526a8f5df2e2ac02a6edc8e7d6d687b080a8f8efe3</cites><orcidid>0000-0003-4901-9434 ; 0000-0002-3732-4733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9805696$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9805696$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Srivatsa, Chirag Ramesh</creatorcontrib><creatorcontrib>Murthy, Chandra R.</creatorcontrib><title>User Activity Detection for Irregular Repetition Slotted Aloha Based MMTC</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Irregular repetition slotted aloha (IRSA) is a grant-free random access protocol for massive machine-type communications, in which users transmit replicas of their packet in randomly selected resource blocks within a frame. In this paper, we first develop a novel Bayesian user activity detection (UAD) algorithm for IRSA, which exploits both the sparsity in user activity as well as the underlying structure of IRSA transmissions. Next, we derive the Cramér-Rao bound (CRB) on the mean squared error in channel estimation. We empirically show that the channel estimates obtained as a by-product of the proposed UAD algorithm achieves the CRB. Then, we analyze the signal to interference plus noise ratio achieved by the users, accounting for UAD, channel estimation errors, and pilot contamination. Finally, we illustrate the impact of these non-idealities on the throughput of IRSA via Monte Carlo simulations. For example, in a system with 1500 users and 10% of the users being active per frame, a pilot length of as low as 20 symbols is sufficient for accurate user activity detection. In contrast, using classical compressed sensing approaches for UAD would require a pilot length of about 346 symbols. Our results reveal crucial insights into dependence of UAD errors and throughput on parameters such as the length of the pilot sequence, the number of antennas at the BS, the number of users, and the signal to noise ratio.</description><subject>Algorithms</subject><subject>Channel estimation</subject><subject>Contamination</subject><subject>Decoding</subject><subject>Errors</subject><subject>grant-free random access</subject><subject>irregular repetition slotted aloha</subject><subject>massive machine-type communications</subject><subject>Random access</subject><subject>Repetition</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Symbols</subject><subject>Throughput</subject><subject>user activity detection</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC56353uRY61ehRbEteAsxO6tb1qYmqdD_3tQWT_PgvTfD_BC6JHhACNY389nLgGJKB4wooTQ5Qj2iOSkxr-Rx1liwUqjq7RSdxbjEmHCuZQ-NFxFCMXSp_WnTtriDBFn7VdH4UIxDgI9NZ0PxCmtI7Z8x63xKUBfDzn_a4tbGrKfT-egcnTS2i3BxmH20eLifj57KyfPjeDSclI5qkkrOmGOS46YWTipZcW4ZdVJQaVUj6oYCtQ5TK6F2Cqpa1lJV71jhbCtogPXR9X7vOvjvDcRkln4TVvmkoVITJfOXJKfwPuWCjzFAY9ah_bJhawg2O2AmAzM7YOYALFeu9pUWAP7jWmEhtWS_yZVmXA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Srivatsa, Chirag Ramesh</creator><creator>Murthy, Chandra R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4901-9434</orcidid><orcidid>https://orcid.org/0000-0002-3732-4733</orcidid></search><sort><creationdate>2022</creationdate><title>User Activity Detection for Irregular Repetition Slotted Aloha Based MMTC</title><author>Srivatsa, Chirag Ramesh ; Murthy, Chandra R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-433c3640fd5c686744a32c6526a8f5df2e2ac02a6edc8e7d6d687b080a8f8efe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Channel estimation</topic><topic>Contamination</topic><topic>Decoding</topic><topic>Errors</topic><topic>grant-free random access</topic><topic>irregular repetition slotted aloha</topic><topic>massive machine-type communications</topic><topic>Random access</topic><topic>Repetition</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Symbols</topic><topic>Throughput</topic><topic>user activity detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srivatsa, Chirag Ramesh</creatorcontrib><creatorcontrib>Murthy, Chandra R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Srivatsa, Chirag Ramesh</au><au>Murthy, Chandra R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>User Activity Detection for Irregular Repetition Slotted Aloha Based MMTC</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2022</date><risdate>2022</risdate><volume>70</volume><spage>3616</spage><epage>3631</epage><pages>3616-3631</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Irregular repetition slotted aloha (IRSA) is a grant-free random access protocol for massive machine-type communications, in which users transmit replicas of their packet in randomly selected resource blocks within a frame. In this paper, we first develop a novel Bayesian user activity detection (UAD) algorithm for IRSA, which exploits both the sparsity in user activity as well as the underlying structure of IRSA transmissions. Next, we derive the Cramér-Rao bound (CRB) on the mean squared error in channel estimation. We empirically show that the channel estimates obtained as a by-product of the proposed UAD algorithm achieves the CRB. Then, we analyze the signal to interference plus noise ratio achieved by the users, accounting for UAD, channel estimation errors, and pilot contamination. Finally, we illustrate the impact of these non-idealities on the throughput of IRSA via Monte Carlo simulations. For example, in a system with 1500 users and 10% of the users being active per frame, a pilot length of as low as 20 symbols is sufficient for accurate user activity detection. In contrast, using classical compressed sensing approaches for UAD would require a pilot length of about 346 symbols. Our results reveal crucial insights into dependence of UAD errors and throughput on parameters such as the length of the pilot sequence, the number of antennas at the BS, the number of users, and the signal to noise ratio.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2022.3185891</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4901-9434</orcidid><orcidid>https://orcid.org/0000-0002-3732-4733</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2022, Vol.70, p.3616-3631 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2022_3185891 |
source | IEEE |
subjects | Algorithms Channel estimation Contamination Decoding Errors grant-free random access irregular repetition slotted aloha massive machine-type communications Random access Repetition Signal processing algorithms Signal to noise ratio Symbols Throughput user activity detection |
title | User Activity Detection for Irregular Repetition Slotted Aloha Based MMTC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=User%20Activity%20Detection%20for%20Irregular%20Repetition%20Slotted%20Aloha%20Based%20MMTC&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Srivatsa,%20Chirag%20Ramesh&rft.date=2022&rft.volume=70&rft.spage=3616&rft.epage=3631&rft.pages=3616-3631&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2022.3185891&rft_dat=%3Cproquest_RIE%3E2691865871%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691865871&rft_id=info:pmid/&rft_ieee_id=9805696&rfr_iscdi=true |