A New Class of Explicit Interpolatory Splines and Related Measurement Estimation

This paper proposes a new and rich class of cardinal splines called generalized MK-splines (GMK-splines), which manifest several beneficial properties (especially the interpolation property) and the ability to obtain a construction with a desired frequency response. The GMK-spline basis functions of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2020, Vol.68, p.2799-2813
Hauptverfasser: Chen, Juanjuan, Cai, Zhanchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2813
container_issue
container_start_page 2799
container_title IEEE transactions on signal processing
container_volume 68
creator Chen, Juanjuan
Cai, Zhanchuan
description This paper proposes a new and rich class of cardinal splines called generalized MK-splines (GMK-splines), which manifest several beneficial properties (especially the interpolation property) and the ability to obtain a construction with a desired frequency response. The GMK-spline basis functions of given degree can be constructed by a linear combination of a finite number of shifted B-splines of that degree in a unified framework, the GMK-spline bases form Riesz bases of their generating spaces, and the GMK-spline frequency responses meet Strang-Fix conditions. Furthermore, we provide search methods for minimal-support GMK-splines and local optimal GMK-spline frequency responses under different given passband frequencies. Several related estimates are theoretically assessed, including energy magnitude, maximum, and approximation error of GMK-spline interpolated signals. In signal processing applications, the GMK-splines behave as interpolating FIR filters with simple implementation, and some of them attain lower error than other traditional interpolation system responses, such as cubic cardinal B-spline and linear spline, when approximating to an ideal lowpass filter. Experimental results show that the GMK-spline filters can be implemented efficiently and have significant characteristics in the process of bandlimited signal reconstruction.
doi_str_mv 10.1109/TSP.2020.2984477
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2020_2984477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9055225</ieee_id><sourcerecordid>2413217807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d50d0ea28114c2d2dbd73fc0fae81d2bde344745d0d329a0decc49169fe0dc583</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJNulujqVULVQttoK3kCazsGW7uyYp2v_elIqnGR7vzcePkFsGI8ZAPaxXyxEHDiOuSiGK4owMmBIsA1GMz1MPMs9kWXxekqsQtgBMCDUekOWEvuI3nTYmBNpVdPbTN7WtI523EX3fNSZ2_kBXSW0xUNM6-o5JREdf0IS9xx22kc5CrHcm1l17TS4q0wS8-atD8vE4W0-fs8Xb03w6WWSWKxYzJ8EBGl4yJix33G1ckVcWKoMlc3zjME9fCOnA5VwZcGitUGysKgRnZZkPyf1pbu-7rz2GqLfd3rdppeaC5ZwVJRTJBSeX9V0IHivd-3SoP2gG-shNJ276yE3_cUuRu1OkRsR_uwIpOZf5L8uMacg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413217807</pqid></control><display><type>article</type><title>A New Class of Explicit Interpolatory Splines and Related Measurement Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Juanjuan ; Cai, Zhanchuan</creator><creatorcontrib>Chen, Juanjuan ; Cai, Zhanchuan</creatorcontrib><description>This paper proposes a new and rich class of cardinal splines called generalized MK-splines (GMK-splines), which manifest several beneficial properties (especially the interpolation property) and the ability to obtain a construction with a desired frequency response. The GMK-spline basis functions of given degree can be constructed by a linear combination of a finite number of shifted B-splines of that degree in a unified framework, the GMK-spline bases form Riesz bases of their generating spaces, and the GMK-spline frequency responses meet Strang-Fix conditions. Furthermore, we provide search methods for minimal-support GMK-splines and local optimal GMK-spline frequency responses under different given passband frequencies. Several related estimates are theoretically assessed, including energy magnitude, maximum, and approximation error of GMK-spline interpolated signals. In signal processing applications, the GMK-splines behave as interpolating FIR filters with simple implementation, and some of them attain lower error than other traditional interpolation system responses, such as cubic cardinal B-spline and linear spline, when approximating to an ideal lowpass filter. Experimental results show that the GMK-spline filters can be implemented efficiently and have significant characteristics in the process of bandlimited signal reconstruction.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2020.2984477</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Basis functions ; cardinal B-spline ; cardinal interpolation ; Finite impulse response filters ; FIR filters ; Frequency response ; GMK-splines ; interpolating FIR filters ; Interpolation ; Low pass filters ; Method of moments ; MK-spline ; Riesz basis ; Search methods ; Signal processing ; Signal reconstruction ; Spline functions ; Splines (mathematics) ; strangefix conditions</subject><ispartof>IEEE transactions on signal processing, 2020, Vol.68, p.2799-2813</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d50d0ea28114c2d2dbd73fc0fae81d2bde344745d0d329a0decc49169fe0dc583</citedby><cites>FETCH-LOGICAL-c291t-d50d0ea28114c2d2dbd73fc0fae81d2bde344745d0d329a0decc49169fe0dc583</cites><orcidid>0000-0001-8824-6467 ; 0000-0002-6954-7691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9055225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9055225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Juanjuan</creatorcontrib><creatorcontrib>Cai, Zhanchuan</creatorcontrib><title>A New Class of Explicit Interpolatory Splines and Related Measurement Estimation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper proposes a new and rich class of cardinal splines called generalized MK-splines (GMK-splines), which manifest several beneficial properties (especially the interpolation property) and the ability to obtain a construction with a desired frequency response. The GMK-spline basis functions of given degree can be constructed by a linear combination of a finite number of shifted B-splines of that degree in a unified framework, the GMK-spline bases form Riesz bases of their generating spaces, and the GMK-spline frequency responses meet Strang-Fix conditions. Furthermore, we provide search methods for minimal-support GMK-splines and local optimal GMK-spline frequency responses under different given passband frequencies. Several related estimates are theoretically assessed, including energy magnitude, maximum, and approximation error of GMK-spline interpolated signals. In signal processing applications, the GMK-splines behave as interpolating FIR filters with simple implementation, and some of them attain lower error than other traditional interpolation system responses, such as cubic cardinal B-spline and linear spline, when approximating to an ideal lowpass filter. Experimental results show that the GMK-spline filters can be implemented efficiently and have significant characteristics in the process of bandlimited signal reconstruction.</description><subject>Basis functions</subject><subject>cardinal B-spline</subject><subject>cardinal interpolation</subject><subject>Finite impulse response filters</subject><subject>FIR filters</subject><subject>Frequency response</subject><subject>GMK-splines</subject><subject>interpolating FIR filters</subject><subject>Interpolation</subject><subject>Low pass filters</subject><subject>Method of moments</subject><subject>MK-spline</subject><subject>Riesz basis</subject><subject>Search methods</subject><subject>Signal processing</subject><subject>Signal reconstruction</subject><subject>Spline functions</subject><subject>Splines (mathematics)</subject><subject>strangefix conditions</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJNulujqVULVQttoK3kCazsGW7uyYp2v_elIqnGR7vzcePkFsGI8ZAPaxXyxEHDiOuSiGK4owMmBIsA1GMz1MPMs9kWXxekqsQtgBMCDUekOWEvuI3nTYmBNpVdPbTN7WtI523EX3fNSZ2_kBXSW0xUNM6-o5JREdf0IS9xx22kc5CrHcm1l17TS4q0wS8-atD8vE4W0-fs8Xb03w6WWSWKxYzJ8EBGl4yJix33G1ckVcWKoMlc3zjME9fCOnA5VwZcGitUGysKgRnZZkPyf1pbu-7rz2GqLfd3rdppeaC5ZwVJRTJBSeX9V0IHivd-3SoP2gG-shNJ276yE3_cUuRu1OkRsR_uwIpOZf5L8uMacg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Juanjuan</creator><creator>Cai, Zhanchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8824-6467</orcidid><orcidid>https://orcid.org/0000-0002-6954-7691</orcidid></search><sort><creationdate>2020</creationdate><title>A New Class of Explicit Interpolatory Splines and Related Measurement Estimation</title><author>Chen, Juanjuan ; Cai, Zhanchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d50d0ea28114c2d2dbd73fc0fae81d2bde344745d0d329a0decc49169fe0dc583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Basis functions</topic><topic>cardinal B-spline</topic><topic>cardinal interpolation</topic><topic>Finite impulse response filters</topic><topic>FIR filters</topic><topic>Frequency response</topic><topic>GMK-splines</topic><topic>interpolating FIR filters</topic><topic>Interpolation</topic><topic>Low pass filters</topic><topic>Method of moments</topic><topic>MK-spline</topic><topic>Riesz basis</topic><topic>Search methods</topic><topic>Signal processing</topic><topic>Signal reconstruction</topic><topic>Spline functions</topic><topic>Splines (mathematics)</topic><topic>strangefix conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Juanjuan</creatorcontrib><creatorcontrib>Cai, Zhanchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Juanjuan</au><au>Cai, Zhanchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Class of Explicit Interpolatory Splines and Related Measurement Estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2020</date><risdate>2020</risdate><volume>68</volume><spage>2799</spage><epage>2813</epage><pages>2799-2813</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper proposes a new and rich class of cardinal splines called generalized MK-splines (GMK-splines), which manifest several beneficial properties (especially the interpolation property) and the ability to obtain a construction with a desired frequency response. The GMK-spline basis functions of given degree can be constructed by a linear combination of a finite number of shifted B-splines of that degree in a unified framework, the GMK-spline bases form Riesz bases of their generating spaces, and the GMK-spline frequency responses meet Strang-Fix conditions. Furthermore, we provide search methods for minimal-support GMK-splines and local optimal GMK-spline frequency responses under different given passband frequencies. Several related estimates are theoretically assessed, including energy magnitude, maximum, and approximation error of GMK-spline interpolated signals. In signal processing applications, the GMK-splines behave as interpolating FIR filters with simple implementation, and some of them attain lower error than other traditional interpolation system responses, such as cubic cardinal B-spline and linear spline, when approximating to an ideal lowpass filter. Experimental results show that the GMK-spline filters can be implemented efficiently and have significant characteristics in the process of bandlimited signal reconstruction.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2020.2984477</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8824-6467</orcidid><orcidid>https://orcid.org/0000-0002-6954-7691</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2020, Vol.68, p.2799-2813
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2020_2984477
source IEEE Electronic Library (IEL)
subjects Basis functions
cardinal B-spline
cardinal interpolation
Finite impulse response filters
FIR filters
Frequency response
GMK-splines
interpolating FIR filters
Interpolation
Low pass filters
Method of moments
MK-spline
Riesz basis
Search methods
Signal processing
Signal reconstruction
Spline functions
Splines (mathematics)
strangefix conditions
title A New Class of Explicit Interpolatory Splines and Related Measurement Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Class%20of%20Explicit%20Interpolatory%20Splines%20and%20Related%20Measurement%20Estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Chen,%20Juanjuan&rft.date=2020&rft.volume=68&rft.spage=2799&rft.epage=2813&rft.pages=2799-2813&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2020.2984477&rft_dat=%3Cproquest_RIE%3E2413217807%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413217807&rft_id=info:pmid/&rft_ieee_id=9055225&rfr_iscdi=true