Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory
This paper deals with adaptive radar detection of targets in the presence of Gaussian disturbance sharing a block-diagonal covariance structure. The problem is formulated according to a very general signal model, which contains the point-like, range-spread, and subspace target (or targets) as specia...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2019-11, Vol.67 (21), p.5671-5685 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5685 |
---|---|
container_issue | 21 |
container_start_page | 5671 |
container_title | IEEE transactions on signal processing |
container_volume | 67 |
creator | Tang, Mengjiao Rong, Yao De Maio, Antonio Chen, Chen Zhou, Jie |
description | This paper deals with adaptive radar detection of targets in the presence of Gaussian disturbance sharing a block-diagonal covariance structure. The problem is formulated according to a very general signal model, which contains the point-like, range-spread, and subspace target (or targets) as special instances. Hence, a unified study on the resulting adaptive detection problem is handled with the use of the invariance theory. The obtained results, including an appropriate transformation group, a maximal invariant and an induced maximal invariant, are proven consistent with those existing in the literature for some simple scenarios. Meanwhile, since the widely-used generalized likelihood ratio detector does not admit a closed form expression, new invariant detectors and their CFAR versions are proposed in this general scenario. Finally, their detection performance is assessed and validated via numerical examples. |
doi_str_mv | 10.1109/TSP.2019.2941119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2019_2941119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8834860</ieee_id><sourcerecordid>2307301892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-35b2da35a00b2b00c0d2b49a5e4442b133df865f1c496a835e493ecaeae346973</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dSbxzyyLK3WgqLYiu7CnZmUpuhMTTLF_ntTW7q6h3PPffARcs1gwBiou_nsdcCBqQFXkjGmTkiPRZWAzLPTqCEVSVrkn-fkwvsVAJNSZT2yHNa4DnZj6BvW6OjYBFMF2zbUNnSCnfcWGzq2PnSuxKYy9MOGJZ0F11XRMjUdtRt09r_1jMHZX7qxSKfN0Z0vTeu2l-RsgV_eXB1qn7w_3M9Hj8nTy2Q6Gj4lFVcsJCIteY0iRYCSlwAV1LyUClMjpeQlE6JeFFm6YFV8HwsRfSVMhQaNkJnKRZ_c7veuXfvTGR_0qu1cE09qLiAXwArFYwr2qcq13juz0Gtnv9FtNQO946kjT73jqQ8848jNfsQaY47xohCyyED8Aaudcfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307301892</pqid></control><display><type>article</type><title>Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Mengjiao ; Rong, Yao ; De Maio, Antonio ; Chen, Chen ; Zhou, Jie</creator><creatorcontrib>Tang, Mengjiao ; Rong, Yao ; De Maio, Antonio ; Chen, Chen ; Zhou, Jie</creatorcontrib><description>This paper deals with adaptive radar detection of targets in the presence of Gaussian disturbance sharing a block-diagonal covariance structure. The problem is formulated according to a very general signal model, which contains the point-like, range-spread, and subspace target (or targets) as special instances. Hence, a unified study on the resulting adaptive detection problem is handled with the use of the invariance theory. The obtained results, including an appropriate transformation group, a maximal invariant and an induced maximal invariant, are proven consistent with those existing in the literature for some simple scenarios. Meanwhile, since the widely-used generalized likelihood ratio detector does not admit a closed form expression, new invariant detectors and their CFAR versions are proposed in this general scenario. Finally, their detection performance is assessed and validated via numerical examples.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2019.2941119</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive detection ; block-diagonal covariance ; Closed-form solutions ; Covariance matrices ; Covariance matrix ; Detectors ; Gaussian noise ; Interference ; Invariance ; invariant detectors ; Invariants ; Likelihood ratio ; Matrix decomposition ; maximal invariant ; Radar detection ; statistical invariance ; Target detection</subject><ispartof>IEEE transactions on signal processing, 2019-11, Vol.67 (21), p.5671-5685</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-35b2da35a00b2b00c0d2b49a5e4442b133df865f1c496a835e493ecaeae346973</citedby><cites>FETCH-LOGICAL-c291t-35b2da35a00b2b00c0d2b49a5e4442b133df865f1c496a835e493ecaeae346973</cites><orcidid>0000-0001-8421-3318 ; 0000-0002-6203-3583 ; 0000-0003-1654-8428 ; 0000-0002-3743-713X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8834860$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8834860$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Mengjiao</creatorcontrib><creatorcontrib>Rong, Yao</creatorcontrib><creatorcontrib>De Maio, Antonio</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><title>Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper deals with adaptive radar detection of targets in the presence of Gaussian disturbance sharing a block-diagonal covariance structure. The problem is formulated according to a very general signal model, which contains the point-like, range-spread, and subspace target (or targets) as special instances. Hence, a unified study on the resulting adaptive detection problem is handled with the use of the invariance theory. The obtained results, including an appropriate transformation group, a maximal invariant and an induced maximal invariant, are proven consistent with those existing in the literature for some simple scenarios. Meanwhile, since the widely-used generalized likelihood ratio detector does not admit a closed form expression, new invariant detectors and their CFAR versions are proposed in this general scenario. Finally, their detection performance is assessed and validated via numerical examples.</description><subject>Adaptive detection</subject><subject>block-diagonal covariance</subject><subject>Closed-form solutions</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Detectors</subject><subject>Gaussian noise</subject><subject>Interference</subject><subject>Invariance</subject><subject>invariant detectors</subject><subject>Invariants</subject><subject>Likelihood ratio</subject><subject>Matrix decomposition</subject><subject>maximal invariant</subject><subject>Radar detection</subject><subject>statistical invariance</subject><subject>Target detection</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dSbxzyyLK3WgqLYiu7CnZmUpuhMTTLF_ntTW7q6h3PPffARcs1gwBiou_nsdcCBqQFXkjGmTkiPRZWAzLPTqCEVSVrkn-fkwvsVAJNSZT2yHNa4DnZj6BvW6OjYBFMF2zbUNnSCnfcWGzq2PnSuxKYy9MOGJZ0F11XRMjUdtRt09r_1jMHZX7qxSKfN0Z0vTeu2l-RsgV_eXB1qn7w_3M9Hj8nTy2Q6Gj4lFVcsJCIteY0iRYCSlwAV1LyUClMjpeQlE6JeFFm6YFV8HwsRfSVMhQaNkJnKRZ_c7veuXfvTGR_0qu1cE09qLiAXwArFYwr2qcq13juz0Gtnv9FtNQO946kjT73jqQ8848jNfsQaY47xohCyyED8Aaudcfo</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Tang, Mengjiao</creator><creator>Rong, Yao</creator><creator>De Maio, Antonio</creator><creator>Chen, Chen</creator><creator>Zhou, Jie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8421-3318</orcidid><orcidid>https://orcid.org/0000-0002-6203-3583</orcidid><orcidid>https://orcid.org/0000-0003-1654-8428</orcidid><orcidid>https://orcid.org/0000-0002-3743-713X</orcidid></search><sort><creationdate>20191101</creationdate><title>Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory</title><author>Tang, Mengjiao ; Rong, Yao ; De Maio, Antonio ; Chen, Chen ; Zhou, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-35b2da35a00b2b00c0d2b49a5e4442b133df865f1c496a835e493ecaeae346973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive detection</topic><topic>block-diagonal covariance</topic><topic>Closed-form solutions</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Detectors</topic><topic>Gaussian noise</topic><topic>Interference</topic><topic>Invariance</topic><topic>invariant detectors</topic><topic>Invariants</topic><topic>Likelihood ratio</topic><topic>Matrix decomposition</topic><topic>maximal invariant</topic><topic>Radar detection</topic><topic>statistical invariance</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Mengjiao</creatorcontrib><creatorcontrib>Rong, Yao</creatorcontrib><creatorcontrib>De Maio, Antonio</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Mengjiao</au><au>Rong, Yao</au><au>De Maio, Antonio</au><au>Chen, Chen</au><au>Zhou, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>67</volume><issue>21</issue><spage>5671</spage><epage>5685</epage><pages>5671-5685</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper deals with adaptive radar detection of targets in the presence of Gaussian disturbance sharing a block-diagonal covariance structure. The problem is formulated according to a very general signal model, which contains the point-like, range-spread, and subspace target (or targets) as special instances. Hence, a unified study on the resulting adaptive detection problem is handled with the use of the invariance theory. The obtained results, including an appropriate transformation group, a maximal invariant and an induced maximal invariant, are proven consistent with those existing in the literature for some simple scenarios. Meanwhile, since the widely-used generalized likelihood ratio detector does not admit a closed form expression, new invariant detectors and their CFAR versions are proposed in this general scenario. Finally, their detection performance is assessed and validated via numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2019.2941119</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8421-3318</orcidid><orcidid>https://orcid.org/0000-0002-6203-3583</orcidid><orcidid>https://orcid.org/0000-0003-1654-8428</orcidid><orcidid>https://orcid.org/0000-0002-3743-713X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2019-11, Vol.67 (21), p.5671-5685 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2019_2941119 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive detection block-diagonal covariance Closed-form solutions Covariance matrices Covariance matrix Detectors Gaussian noise Interference Invariance invariant detectors Invariants Likelihood ratio Matrix decomposition maximal invariant Radar detection statistical invariance Target detection |
title | Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Radar%20Detection%20in%20Gaussian%20Disturbance%20With%20Structured%20Covariance%20Matrix%20via%20Invariance%20Theory&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Tang,%20Mengjiao&rft.date=2019-11-01&rft.volume=67&rft.issue=21&rft.spage=5671&rft.epage=5685&rft.pages=5671-5685&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2019.2941119&rft_dat=%3Cproquest_RIE%3E2307301892%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307301892&rft_id=info:pmid/&rft_ieee_id=8834860&rfr_iscdi=true |