Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory

This paper deals with adaptive radar detection of targets in the presence of Gaussian disturbance sharing a block-diagonal covariance structure. The problem is formulated according to a very general signal model, which contains the point-like, range-spread, and subspace target (or targets) as specia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2019-11, Vol.67 (21), p.5671-5685
Hauptverfasser: Tang, Mengjiao, Rong, Yao, De Maio, Antonio, Chen, Chen, Zhou, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5685
container_issue 21
container_start_page 5671
container_title IEEE transactions on signal processing
container_volume 67
creator Tang, Mengjiao
Rong, Yao
De Maio, Antonio
Chen, Chen
Zhou, Jie
description This paper deals with adaptive radar detection of targets in the presence of Gaussian disturbance sharing a block-diagonal covariance structure. The problem is formulated according to a very general signal model, which contains the point-like, range-spread, and subspace target (or targets) as special instances. Hence, a unified study on the resulting adaptive detection problem is handled with the use of the invariance theory. The obtained results, including an appropriate transformation group, a maximal invariant and an induced maximal invariant, are proven consistent with those existing in the literature for some simple scenarios. Meanwhile, since the widely-used generalized likelihood ratio detector does not admit a closed form expression, new invariant detectors and their CFAR versions are proposed in this general scenario. Finally, their detection performance is assessed and validated via numerical examples.
doi_str_mv 10.1109/TSP.2019.2941119
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2019_2941119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8834860</ieee_id><sourcerecordid>2307301892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-35b2da35a00b2b00c0d2b49a5e4442b133df865f1c496a835e493ecaeae346973</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dSbxzyyLK3WgqLYiu7CnZmUpuhMTTLF_ntTW7q6h3PPffARcs1gwBiou_nsdcCBqQFXkjGmTkiPRZWAzLPTqCEVSVrkn-fkwvsVAJNSZT2yHNa4DnZj6BvW6OjYBFMF2zbUNnSCnfcWGzq2PnSuxKYy9MOGJZ0F11XRMjUdtRt09r_1jMHZX7qxSKfN0Z0vTeu2l-RsgV_eXB1qn7w_3M9Hj8nTy2Q6Gj4lFVcsJCIteY0iRYCSlwAV1LyUClMjpeQlE6JeFFm6YFV8HwsRfSVMhQaNkJnKRZ_c7veuXfvTGR_0qu1cE09qLiAXwArFYwr2qcq13juz0Gtnv9FtNQO946kjT73jqQ8848jNfsQaY47xohCyyED8Aaudcfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307301892</pqid></control><display><type>article</type><title>Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Mengjiao ; Rong, Yao ; De Maio, Antonio ; Chen, Chen ; Zhou, Jie</creator><creatorcontrib>Tang, Mengjiao ; Rong, Yao ; De Maio, Antonio ; Chen, Chen ; Zhou, Jie</creatorcontrib><description>This paper deals with adaptive radar detection of targets in the presence of Gaussian disturbance sharing a block-diagonal covariance structure. The problem is formulated according to a very general signal model, which contains the point-like, range-spread, and subspace target (or targets) as special instances. Hence, a unified study on the resulting adaptive detection problem is handled with the use of the invariance theory. The obtained results, including an appropriate transformation group, a maximal invariant and an induced maximal invariant, are proven consistent with those existing in the literature for some simple scenarios. Meanwhile, since the widely-used generalized likelihood ratio detector does not admit a closed form expression, new invariant detectors and their CFAR versions are proposed in this general scenario. Finally, their detection performance is assessed and validated via numerical examples.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2019.2941119</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive detection ; block-diagonal covariance ; Closed-form solutions ; Covariance matrices ; Covariance matrix ; Detectors ; Gaussian noise ; Interference ; Invariance ; invariant detectors ; Invariants ; Likelihood ratio ; Matrix decomposition ; maximal invariant ; Radar detection ; statistical invariance ; Target detection</subject><ispartof>IEEE transactions on signal processing, 2019-11, Vol.67 (21), p.5671-5685</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-35b2da35a00b2b00c0d2b49a5e4442b133df865f1c496a835e493ecaeae346973</citedby><cites>FETCH-LOGICAL-c291t-35b2da35a00b2b00c0d2b49a5e4442b133df865f1c496a835e493ecaeae346973</cites><orcidid>0000-0001-8421-3318 ; 0000-0002-6203-3583 ; 0000-0003-1654-8428 ; 0000-0002-3743-713X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8834860$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8834860$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Mengjiao</creatorcontrib><creatorcontrib>Rong, Yao</creatorcontrib><creatorcontrib>De Maio, Antonio</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><title>Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper deals with adaptive radar detection of targets in the presence of Gaussian disturbance sharing a block-diagonal covariance structure. The problem is formulated according to a very general signal model, which contains the point-like, range-spread, and subspace target (or targets) as special instances. Hence, a unified study on the resulting adaptive detection problem is handled with the use of the invariance theory. The obtained results, including an appropriate transformation group, a maximal invariant and an induced maximal invariant, are proven consistent with those existing in the literature for some simple scenarios. Meanwhile, since the widely-used generalized likelihood ratio detector does not admit a closed form expression, new invariant detectors and their CFAR versions are proposed in this general scenario. Finally, their detection performance is assessed and validated via numerical examples.</description><subject>Adaptive detection</subject><subject>block-diagonal covariance</subject><subject>Closed-form solutions</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Detectors</subject><subject>Gaussian noise</subject><subject>Interference</subject><subject>Invariance</subject><subject>invariant detectors</subject><subject>Invariants</subject><subject>Likelihood ratio</subject><subject>Matrix decomposition</subject><subject>maximal invariant</subject><subject>Radar detection</subject><subject>statistical invariance</subject><subject>Target detection</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dSbxzyyLK3WgqLYiu7CnZmUpuhMTTLF_ntTW7q6h3PPffARcs1gwBiou_nsdcCBqQFXkjGmTkiPRZWAzLPTqCEVSVrkn-fkwvsVAJNSZT2yHNa4DnZj6BvW6OjYBFMF2zbUNnSCnfcWGzq2PnSuxKYy9MOGJZ0F11XRMjUdtRt09r_1jMHZX7qxSKfN0Z0vTeu2l-RsgV_eXB1qn7w_3M9Hj8nTy2Q6Gj4lFVcsJCIteY0iRYCSlwAV1LyUClMjpeQlE6JeFFm6YFV8HwsRfSVMhQaNkJnKRZ_c7veuXfvTGR_0qu1cE09qLiAXwArFYwr2qcq13juz0Gtnv9FtNQO946kjT73jqQ8848jNfsQaY47xohCyyED8Aaudcfo</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Tang, Mengjiao</creator><creator>Rong, Yao</creator><creator>De Maio, Antonio</creator><creator>Chen, Chen</creator><creator>Zhou, Jie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8421-3318</orcidid><orcidid>https://orcid.org/0000-0002-6203-3583</orcidid><orcidid>https://orcid.org/0000-0003-1654-8428</orcidid><orcidid>https://orcid.org/0000-0002-3743-713X</orcidid></search><sort><creationdate>20191101</creationdate><title>Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory</title><author>Tang, Mengjiao ; Rong, Yao ; De Maio, Antonio ; Chen, Chen ; Zhou, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-35b2da35a00b2b00c0d2b49a5e4442b133df865f1c496a835e493ecaeae346973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive detection</topic><topic>block-diagonal covariance</topic><topic>Closed-form solutions</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Detectors</topic><topic>Gaussian noise</topic><topic>Interference</topic><topic>Invariance</topic><topic>invariant detectors</topic><topic>Invariants</topic><topic>Likelihood ratio</topic><topic>Matrix decomposition</topic><topic>maximal invariant</topic><topic>Radar detection</topic><topic>statistical invariance</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Mengjiao</creatorcontrib><creatorcontrib>Rong, Yao</creatorcontrib><creatorcontrib>De Maio, Antonio</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Mengjiao</au><au>Rong, Yao</au><au>De Maio, Antonio</au><au>Chen, Chen</au><au>Zhou, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>67</volume><issue>21</issue><spage>5671</spage><epage>5685</epage><pages>5671-5685</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper deals with adaptive radar detection of targets in the presence of Gaussian disturbance sharing a block-diagonal covariance structure. The problem is formulated according to a very general signal model, which contains the point-like, range-spread, and subspace target (or targets) as special instances. Hence, a unified study on the resulting adaptive detection problem is handled with the use of the invariance theory. The obtained results, including an appropriate transformation group, a maximal invariant and an induced maximal invariant, are proven consistent with those existing in the literature for some simple scenarios. Meanwhile, since the widely-used generalized likelihood ratio detector does not admit a closed form expression, new invariant detectors and their CFAR versions are proposed in this general scenario. Finally, their detection performance is assessed and validated via numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2019.2941119</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8421-3318</orcidid><orcidid>https://orcid.org/0000-0002-6203-3583</orcidid><orcidid>https://orcid.org/0000-0003-1654-8428</orcidid><orcidid>https://orcid.org/0000-0002-3743-713X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2019-11, Vol.67 (21), p.5671-5685
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2019_2941119
source IEEE Electronic Library (IEL)
subjects Adaptive detection
block-diagonal covariance
Closed-form solutions
Covariance matrices
Covariance matrix
Detectors
Gaussian noise
Interference
Invariance
invariant detectors
Invariants
Likelihood ratio
Matrix decomposition
maximal invariant
Radar detection
statistical invariance
Target detection
title Adaptive Radar Detection in Gaussian Disturbance With Structured Covariance Matrix via Invariance Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Radar%20Detection%20in%20Gaussian%20Disturbance%20With%20Structured%20Covariance%20Matrix%20via%20Invariance%20Theory&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Tang,%20Mengjiao&rft.date=2019-11-01&rft.volume=67&rft.issue=21&rft.spage=5671&rft.epage=5685&rft.pages=5671-5685&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2019.2941119&rft_dat=%3Cproquest_RIE%3E2307301892%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2307301892&rft_id=info:pmid/&rft_ieee_id=8834860&rfr_iscdi=true