Fully Orthogonal 2-D Lattice Structures for Quarter-Plane and Asymmetric Half-Plane Autoregressive Modeling of Random Fields
This paper is mainly devoted to the derivation of a new fully orthogonal two-dimensional (2-D) lattice structure for general autoregressive (AR) modeling of random fields. Similar to the 1-D lattice theory, this approach is based on recursive incrementation of the prediction support region by adding...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2019-09, Vol.67 (17), p.4507-4520 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4520 |
---|---|
container_issue | 17 |
container_start_page | 4507 |
container_title | IEEE transactions on signal processing |
container_volume | 67 |
creator | Kayran, Ahmet Hamdi Camcioglu, Erdogan |
description | This paper is mainly devoted to the derivation of a new fully orthogonal two-dimensional (2-D) lattice structure for general autoregressive (AR) modeling of random fields. Similar to the 1-D lattice theory, this approach is based on recursive incrementation of the prediction support region by adding a single past observation point at each stage. In addition to developing the basic theory, the presentation includes horizontal and vertical building blocks of the proposed causal 2-D AR lattice filters. The algorithm presented here is useful for high-resolution 2-D spectral analysis applications. It is shown that the new fully orthogonal 2-D lattice structure can be an efficient tool for high-resolution radar imaging. |
doi_str_mv | 10.1109/TSP.2019.2929463 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2019_2929463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8769856</ieee_id><sourcerecordid>2271993911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-85f84161300d31b864b1f0454930bb1fa83eea510d96e502f440205b057118443</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRoMoWKt3wcuC59SZ7G6SPZZqrVBptRW8hW0yqSlptu5uhII_3pQWT_PBfG9gXhDcIgwQQT0sF_NBBKgGkYqUiPlZ0EMlMASRxOddBslDmSafl8GVcxsAFELFveB33Nb1ns2s_zJr0-iaReEjm2rvq5zYwts2960lx0pj2VurrScbzmvdENNNwYZuv92St1XOJrouT5th642ldYe56ofYqymorpo1MyV77yizZeOK6sJdBxelrh3dnGY_-Bg_LUeTcDp7fhkNp2GOifBhKstUYIwcoOC4SmOxwhKEFIrDqos65URaIhQqJglRKQREIFcgE8RUCN4P7o93d9Z8t-R8tjGt7Z51WRQlqBRXiF0Ljq3cGucsldnOVltt9xlCdnCcdY6zg-Ps5LhD7o5IRUT_9TSJVSpj_gfXpndO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2271993911</pqid></control><display><type>article</type><title>Fully Orthogonal 2-D Lattice Structures for Quarter-Plane and Asymmetric Half-Plane Autoregressive Modeling of Random Fields</title><source>IEEE Electronic Library (IEL)</source><creator>Kayran, Ahmet Hamdi ; Camcioglu, Erdogan</creator><creatorcontrib>Kayran, Ahmet Hamdi ; Camcioglu, Erdogan</creatorcontrib><description>This paper is mainly devoted to the derivation of a new fully orthogonal two-dimensional (2-D) lattice structure for general autoregressive (AR) modeling of random fields. Similar to the 1-D lattice theory, this approach is based on recursive incrementation of the prediction support region by adding a single past observation point at each stage. In addition to developing the basic theory, the presentation includes horizontal and vertical building blocks of the proposed causal 2-D AR lattice filters. The algorithm presented here is useful for high-resolution 2-D spectral analysis applications. It is shown that the new fully orthogonal 2-D lattice structure can be an efficient tool for high-resolution radar imaging.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2019.2929463</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>2-D lattice filters ; 2-D signal processing ; 2-D spectral estimation ; Algorithms ; autoregressive modeling ; Autoregressive models ; Autoregressive processes ; Computational modeling ; Fields (mathematics) ; High resolution ; Image resolution ; Indexes ; Lattice theory ; Lattices ; linear prediction ; Mathematical model ; Modelling ; Prediction algorithms ; Radar imaging ; Recursive methods ; Spectrum analysis ; Two dimensional analysis ; Two dimensional models</subject><ispartof>IEEE transactions on signal processing, 2019-09, Vol.67 (17), p.4507-4520</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c174t-85f84161300d31b864b1f0454930bb1fa83eea510d96e502f440205b057118443</cites><orcidid>0000-0002-5237-8609 ; 0000-0002-2228-0045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8769856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8769856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kayran, Ahmet Hamdi</creatorcontrib><creatorcontrib>Camcioglu, Erdogan</creatorcontrib><title>Fully Orthogonal 2-D Lattice Structures for Quarter-Plane and Asymmetric Half-Plane Autoregressive Modeling of Random Fields</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper is mainly devoted to the derivation of a new fully orthogonal two-dimensional (2-D) lattice structure for general autoregressive (AR) modeling of random fields. Similar to the 1-D lattice theory, this approach is based on recursive incrementation of the prediction support region by adding a single past observation point at each stage. In addition to developing the basic theory, the presentation includes horizontal and vertical building blocks of the proposed causal 2-D AR lattice filters. The algorithm presented here is useful for high-resolution 2-D spectral analysis applications. It is shown that the new fully orthogonal 2-D lattice structure can be an efficient tool for high-resolution radar imaging.</description><subject>2-D lattice filters</subject><subject>2-D signal processing</subject><subject>2-D spectral estimation</subject><subject>Algorithms</subject><subject>autoregressive modeling</subject><subject>Autoregressive models</subject><subject>Autoregressive processes</subject><subject>Computational modeling</subject><subject>Fields (mathematics)</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Indexes</subject><subject>Lattice theory</subject><subject>Lattices</subject><subject>linear prediction</subject><subject>Mathematical model</subject><subject>Modelling</subject><subject>Prediction algorithms</subject><subject>Radar imaging</subject><subject>Recursive methods</subject><subject>Spectrum analysis</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRoMoWKt3wcuC59SZ7G6SPZZqrVBptRW8hW0yqSlptu5uhII_3pQWT_PBfG9gXhDcIgwQQT0sF_NBBKgGkYqUiPlZ0EMlMASRxOddBslDmSafl8GVcxsAFELFveB33Nb1ns2s_zJr0-iaReEjm2rvq5zYwts2960lx0pj2VurrScbzmvdENNNwYZuv92St1XOJrouT5th642ldYe56ofYqymorpo1MyV77yizZeOK6sJdBxelrh3dnGY_-Bg_LUeTcDp7fhkNp2GOifBhKstUYIwcoOC4SmOxwhKEFIrDqos65URaIhQqJglRKQREIFcgE8RUCN4P7o93d9Z8t-R8tjGt7Z51WRQlqBRXiF0Ljq3cGucsldnOVltt9xlCdnCcdY6zg-Ps5LhD7o5IRUT_9TSJVSpj_gfXpndO</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Kayran, Ahmet Hamdi</creator><creator>Camcioglu, Erdogan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5237-8609</orcidid><orcidid>https://orcid.org/0000-0002-2228-0045</orcidid></search><sort><creationdate>20190901</creationdate><title>Fully Orthogonal 2-D Lattice Structures for Quarter-Plane and Asymmetric Half-Plane Autoregressive Modeling of Random Fields</title><author>Kayran, Ahmet Hamdi ; Camcioglu, Erdogan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-85f84161300d31b864b1f0454930bb1fa83eea510d96e502f440205b057118443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2-D lattice filters</topic><topic>2-D signal processing</topic><topic>2-D spectral estimation</topic><topic>Algorithms</topic><topic>autoregressive modeling</topic><topic>Autoregressive models</topic><topic>Autoregressive processes</topic><topic>Computational modeling</topic><topic>Fields (mathematics)</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Indexes</topic><topic>Lattice theory</topic><topic>Lattices</topic><topic>linear prediction</topic><topic>Mathematical model</topic><topic>Modelling</topic><topic>Prediction algorithms</topic><topic>Radar imaging</topic><topic>Recursive methods</topic><topic>Spectrum analysis</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kayran, Ahmet Hamdi</creatorcontrib><creatorcontrib>Camcioglu, Erdogan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kayran, Ahmet Hamdi</au><au>Camcioglu, Erdogan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Orthogonal 2-D Lattice Structures for Quarter-Plane and Asymmetric Half-Plane Autoregressive Modeling of Random Fields</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>67</volume><issue>17</issue><spage>4507</spage><epage>4520</epage><pages>4507-4520</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper is mainly devoted to the derivation of a new fully orthogonal two-dimensional (2-D) lattice structure for general autoregressive (AR) modeling of random fields. Similar to the 1-D lattice theory, this approach is based on recursive incrementation of the prediction support region by adding a single past observation point at each stage. In addition to developing the basic theory, the presentation includes horizontal and vertical building blocks of the proposed causal 2-D AR lattice filters. The algorithm presented here is useful for high-resolution 2-D spectral analysis applications. It is shown that the new fully orthogonal 2-D lattice structure can be an efficient tool for high-resolution radar imaging.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2019.2929463</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5237-8609</orcidid><orcidid>https://orcid.org/0000-0002-2228-0045</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2019-09, Vol.67 (17), p.4507-4520 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2019_2929463 |
source | IEEE Electronic Library (IEL) |
subjects | 2-D lattice filters 2-D signal processing 2-D spectral estimation Algorithms autoregressive modeling Autoregressive models Autoregressive processes Computational modeling Fields (mathematics) High resolution Image resolution Indexes Lattice theory Lattices linear prediction Mathematical model Modelling Prediction algorithms Radar imaging Recursive methods Spectrum analysis Two dimensional analysis Two dimensional models |
title | Fully Orthogonal 2-D Lattice Structures for Quarter-Plane and Asymmetric Half-Plane Autoregressive Modeling of Random Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Orthogonal%202-D%20Lattice%20Structures%20for%20Quarter-Plane%20and%20Asymmetric%20Half-Plane%20Autoregressive%20Modeling%20of%20Random%20Fields&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kayran,%20Ahmet%20Hamdi&rft.date=2019-09-01&rft.volume=67&rft.issue=17&rft.spage=4507&rft.epage=4520&rft.pages=4507-4520&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2019.2929463&rft_dat=%3Cproquest_RIE%3E2271993911%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2271993911&rft_id=info:pmid/&rft_ieee_id=8769856&rfr_iscdi=true |