Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications

This paper considers covert communications in the context of unmanned aerial vehicle (UAV) networks, aiming to hide a UAV for transmitting critical information out of an area that is monitored and where communication is not allowed. Specifically, the UAV as a transmitter intends to transmit informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2019-08, Vol.67 (16), p.4276-4290
Hauptverfasser: Zhou, Xiaobo, Yan, Shihao, Hu, Jinsong, Sun, Jiande, Li, Jun, Shu, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4290
container_issue 16
container_start_page 4276
container_title IEEE transactions on signal processing
container_volume 67
creator Zhou, Xiaobo
Yan, Shihao
Hu, Jinsong
Sun, Jiande
Li, Jun
Shu, Feng
description This paper considers covert communications in the context of unmanned aerial vehicle (UAV) networks, aiming to hide a UAV for transmitting critical information out of an area that is monitored and where communication is not allowed. Specifically, the UAV as a transmitter intends to transmit information to a legitimate receiver (Bob) covertly while avoiding being detected by a warden (Willie), where location uncertainty exists at Bob and/or Willie. In order to enhance the considered covert communication performance, we jointly optimize the UAV's trajectory and transmit power in terms of maximizing the average covert transmission rate from the UAV to Bob subject to transmission outage constraint and covertness constraint. The formulated optimization problem is difficult to tackle directly due to the intractable constraints. As such, we first employ conservative approximation to transform a constraint into a deterministic form and then apply the first-order restrictive approximation to transform the optimization problem into a convex form. By applying the successive convex approximation technique, an efficient iterative algorithm is developed to solve the optimization problem. Our examination shows that the developed joint trajectory and transmit power optimization scheme achieves significantly better covert communication performance as compared to a benchmark scheme.
doi_str_mv 10.1109/TSP.2019.2928949
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2019_2928949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8764452</ieee_id><sourcerecordid>2268435377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-de30e54aea373902504c41a96c360e56b710a6752ab76c0906c364fe468693</originalsourceid><addsrcrecordid>eNo9kEtLAzEQx4MoWKt3wUvAg6etk8cmm2MpPim0aCveQrrNQoq7qUlWqZ_eXVs8zQz_x8APoUsCI0JA3S5e5yMKRI2oooXi6ggNiOIkAy7FcbdDzrK8kO-n6CzGDQDhXIkBWj571yQ82yZXux-TnG-wr7DBy_HbTcSLYDa2TD7ssGnW_dnE2iU899824MoHPPFfNqRu1HXbuPKvIZ6jk8p8RHtxmEP0cn-3mDxm09nD02Q8zUqqSMrWloHNubGGSaaA5sBLTowSJROdIFaSgBEyp2YlRQkKeoFXlotCKDZE1_vSbfCfrY1Jb3wbmu6fplQUnOVMys4Fe1cZfIzBVnobXG3CThPQPTndkdM9OX0g10Wu9hFnrf23F1JwnlP2CwUSaRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268435377</pqid></control><display><type>article</type><title>Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Xiaobo ; Yan, Shihao ; Hu, Jinsong ; Sun, Jiande ; Li, Jun ; Shu, Feng</creator><creatorcontrib>Zhou, Xiaobo ; Yan, Shihao ; Hu, Jinsong ; Sun, Jiande ; Li, Jun ; Shu, Feng</creatorcontrib><description>This paper considers covert communications in the context of unmanned aerial vehicle (UAV) networks, aiming to hide a UAV for transmitting critical information out of an area that is monitored and where communication is not allowed. Specifically, the UAV as a transmitter intends to transmit information to a legitimate receiver (Bob) covertly while avoiding being detected by a warden (Willie), where location uncertainty exists at Bob and/or Willie. In order to enhance the considered covert communication performance, we jointly optimize the UAV's trajectory and transmit power in terms of maximizing the average covert transmission rate from the UAV to Bob subject to transmission outage constraint and covertness constraint. The formulated optimization problem is difficult to tackle directly due to the intractable constraints. As such, we first employ conservative approximation to transform a constraint into a deterministic form and then apply the first-order restrictive approximation to transform the optimization problem into a convex form. By applying the successive convex approximation technique, an efficient iterative algorithm is developed to solve the optimization problem. Our examination shows that the developed joint trajectory and transmit power optimization scheme achieves significantly better covert communication performance as compared to a benchmark scheme.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2019.2928949</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Communication ; Covert communication ; Iterative algorithms ; location uncertainty ; Mathematical analysis ; Optimization ; Queuing theory ; Receivers ; Security ; Trajectory ; Trajectory optimization ; transmit power ; Transmitters ; UAV networks ; Unmanned aerial vehicles ; Wireless communication</subject><ispartof>IEEE transactions on signal processing, 2019-08, Vol.67 (16), p.4276-4290</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-de30e54aea373902504c41a96c360e56b710a6752ab76c0906c364fe468693</citedby><cites>FETCH-LOGICAL-c291t-de30e54aea373902504c41a96c360e56b710a6752ab76c0906c364fe468693</cites><orcidid>0000-0002-4586-1926 ; 0000-0002-6767-3328 ; 0000-0003-0073-1965 ; 0000-0001-8803-9951 ; 0000-0002-4346-9349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8764452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8764452$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Xiaobo</creatorcontrib><creatorcontrib>Yan, Shihao</creatorcontrib><creatorcontrib>Hu, Jinsong</creatorcontrib><creatorcontrib>Sun, Jiande</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Shu, Feng</creatorcontrib><title>Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper considers covert communications in the context of unmanned aerial vehicle (UAV) networks, aiming to hide a UAV for transmitting critical information out of an area that is monitored and where communication is not allowed. Specifically, the UAV as a transmitter intends to transmit information to a legitimate receiver (Bob) covertly while avoiding being detected by a warden (Willie), where location uncertainty exists at Bob and/or Willie. In order to enhance the considered covert communication performance, we jointly optimize the UAV's trajectory and transmit power in terms of maximizing the average covert transmission rate from the UAV to Bob subject to transmission outage constraint and covertness constraint. The formulated optimization problem is difficult to tackle directly due to the intractable constraints. As such, we first employ conservative approximation to transform a constraint into a deterministic form and then apply the first-order restrictive approximation to transform the optimization problem into a convex form. By applying the successive convex approximation technique, an efficient iterative algorithm is developed to solve the optimization problem. Our examination shows that the developed joint trajectory and transmit power optimization scheme achieves significantly better covert communication performance as compared to a benchmark scheme.</description><subject>Approximation</subject><subject>Communication</subject><subject>Covert communication</subject><subject>Iterative algorithms</subject><subject>location uncertainty</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Queuing theory</subject><subject>Receivers</subject><subject>Security</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><subject>transmit power</subject><subject>Transmitters</subject><subject>UAV networks</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEQx4MoWKt3wUvAg6etk8cmm2MpPim0aCveQrrNQoq7qUlWqZ_eXVs8zQz_x8APoUsCI0JA3S5e5yMKRI2oooXi6ggNiOIkAy7FcbdDzrK8kO-n6CzGDQDhXIkBWj571yQ82yZXux-TnG-wr7DBy_HbTcSLYDa2TD7ssGnW_dnE2iU899824MoHPPFfNqRu1HXbuPKvIZ6jk8p8RHtxmEP0cn-3mDxm09nD02Q8zUqqSMrWloHNubGGSaaA5sBLTowSJROdIFaSgBEyp2YlRQkKeoFXlotCKDZE1_vSbfCfrY1Jb3wbmu6fplQUnOVMys4Fe1cZfIzBVnobXG3CThPQPTndkdM9OX0g10Wu9hFnrf23F1JwnlP2CwUSaRE</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Zhou, Xiaobo</creator><creator>Yan, Shihao</creator><creator>Hu, Jinsong</creator><creator>Sun, Jiande</creator><creator>Li, Jun</creator><creator>Shu, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4586-1926</orcidid><orcidid>https://orcid.org/0000-0002-6767-3328</orcidid><orcidid>https://orcid.org/0000-0003-0073-1965</orcidid><orcidid>https://orcid.org/0000-0001-8803-9951</orcidid><orcidid>https://orcid.org/0000-0002-4346-9349</orcidid></search><sort><creationdate>20190815</creationdate><title>Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications</title><author>Zhou, Xiaobo ; Yan, Shihao ; Hu, Jinsong ; Sun, Jiande ; Li, Jun ; Shu, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-de30e54aea373902504c41a96c360e56b710a6752ab76c0906c364fe468693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Communication</topic><topic>Covert communication</topic><topic>Iterative algorithms</topic><topic>location uncertainty</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Queuing theory</topic><topic>Receivers</topic><topic>Security</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><topic>transmit power</topic><topic>Transmitters</topic><topic>UAV networks</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaobo</creatorcontrib><creatorcontrib>Yan, Shihao</creatorcontrib><creatorcontrib>Hu, Jinsong</creatorcontrib><creatorcontrib>Sun, Jiande</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Shu, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Xiaobo</au><au>Yan, Shihao</au><au>Hu, Jinsong</au><au>Sun, Jiande</au><au>Li, Jun</au><au>Shu, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2019-08-15</date><risdate>2019</risdate><volume>67</volume><issue>16</issue><spage>4276</spage><epage>4290</epage><pages>4276-4290</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper considers covert communications in the context of unmanned aerial vehicle (UAV) networks, aiming to hide a UAV for transmitting critical information out of an area that is monitored and where communication is not allowed. Specifically, the UAV as a transmitter intends to transmit information to a legitimate receiver (Bob) covertly while avoiding being detected by a warden (Willie), where location uncertainty exists at Bob and/or Willie. In order to enhance the considered covert communication performance, we jointly optimize the UAV's trajectory and transmit power in terms of maximizing the average covert transmission rate from the UAV to Bob subject to transmission outage constraint and covertness constraint. The formulated optimization problem is difficult to tackle directly due to the intractable constraints. As such, we first employ conservative approximation to transform a constraint into a deterministic form and then apply the first-order restrictive approximation to transform the optimization problem into a convex form. By applying the successive convex approximation technique, an efficient iterative algorithm is developed to solve the optimization problem. Our examination shows that the developed joint trajectory and transmit power optimization scheme achieves significantly better covert communication performance as compared to a benchmark scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2019.2928949</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4586-1926</orcidid><orcidid>https://orcid.org/0000-0002-6767-3328</orcidid><orcidid>https://orcid.org/0000-0003-0073-1965</orcidid><orcidid>https://orcid.org/0000-0001-8803-9951</orcidid><orcidid>https://orcid.org/0000-0002-4346-9349</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2019-08, Vol.67 (16), p.4276-4290
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2019_2928949
source IEEE Electronic Library (IEL)
subjects Approximation
Communication
Covert communication
Iterative algorithms
location uncertainty
Mathematical analysis
Optimization
Queuing theory
Receivers
Security
Trajectory
Trajectory optimization
transmit power
Transmitters
UAV networks
Unmanned aerial vehicles
Wireless communication
title Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Optimization%20of%20a%20UAV's%20Trajectory%20and%20Transmit%20Power%20for%20Covert%20Communications&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Zhou,%20Xiaobo&rft.date=2019-08-15&rft.volume=67&rft.issue=16&rft.spage=4276&rft.epage=4290&rft.pages=4276-4290&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2019.2928949&rft_dat=%3Cproquest_RIE%3E2268435377%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268435377&rft_id=info:pmid/&rft_ieee_id=8764452&rfr_iscdi=true