Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications
This paper considers covert communications in the context of unmanned aerial vehicle (UAV) networks, aiming to hide a UAV for transmitting critical information out of an area that is monitored and where communication is not allowed. Specifically, the UAV as a transmitter intends to transmit informat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2019-08, Vol.67 (16), p.4276-4290 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4290 |
---|---|
container_issue | 16 |
container_start_page | 4276 |
container_title | IEEE transactions on signal processing |
container_volume | 67 |
creator | Zhou, Xiaobo Yan, Shihao Hu, Jinsong Sun, Jiande Li, Jun Shu, Feng |
description | This paper considers covert communications in the context of unmanned aerial vehicle (UAV) networks, aiming to hide a UAV for transmitting critical information out of an area that is monitored and where communication is not allowed. Specifically, the UAV as a transmitter intends to transmit information to a legitimate receiver (Bob) covertly while avoiding being detected by a warden (Willie), where location uncertainty exists at Bob and/or Willie. In order to enhance the considered covert communication performance, we jointly optimize the UAV's trajectory and transmit power in terms of maximizing the average covert transmission rate from the UAV to Bob subject to transmission outage constraint and covertness constraint. The formulated optimization problem is difficult to tackle directly due to the intractable constraints. As such, we first employ conservative approximation to transform a constraint into a deterministic form and then apply the first-order restrictive approximation to transform the optimization problem into a convex form. By applying the successive convex approximation technique, an efficient iterative algorithm is developed to solve the optimization problem. Our examination shows that the developed joint trajectory and transmit power optimization scheme achieves significantly better covert communication performance as compared to a benchmark scheme. |
doi_str_mv | 10.1109/TSP.2019.2928949 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2019_2928949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8764452</ieee_id><sourcerecordid>2268435377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-de30e54aea373902504c41a96c360e56b710a6752ab76c0906c364fe468693</originalsourceid><addsrcrecordid>eNo9kEtLAzEQx4MoWKt3wUvAg6etk8cmm2MpPim0aCveQrrNQoq7qUlWqZ_eXVs8zQz_x8APoUsCI0JA3S5e5yMKRI2oooXi6ggNiOIkAy7FcbdDzrK8kO-n6CzGDQDhXIkBWj571yQ82yZXux-TnG-wr7DBy_HbTcSLYDa2TD7ssGnW_dnE2iU899824MoHPPFfNqRu1HXbuPKvIZ6jk8p8RHtxmEP0cn-3mDxm09nD02Q8zUqqSMrWloHNubGGSaaA5sBLTowSJROdIFaSgBEyp2YlRQkKeoFXlotCKDZE1_vSbfCfrY1Jb3wbmu6fplQUnOVMys4Fe1cZfIzBVnobXG3CThPQPTndkdM9OX0g10Wu9hFnrf23F1JwnlP2CwUSaRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268435377</pqid></control><display><type>article</type><title>Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Xiaobo ; Yan, Shihao ; Hu, Jinsong ; Sun, Jiande ; Li, Jun ; Shu, Feng</creator><creatorcontrib>Zhou, Xiaobo ; Yan, Shihao ; Hu, Jinsong ; Sun, Jiande ; Li, Jun ; Shu, Feng</creatorcontrib><description>This paper considers covert communications in the context of unmanned aerial vehicle (UAV) networks, aiming to hide a UAV for transmitting critical information out of an area that is monitored and where communication is not allowed. Specifically, the UAV as a transmitter intends to transmit information to a legitimate receiver (Bob) covertly while avoiding being detected by a warden (Willie), where location uncertainty exists at Bob and/or Willie. In order to enhance the considered covert communication performance, we jointly optimize the UAV's trajectory and transmit power in terms of maximizing the average covert transmission rate from the UAV to Bob subject to transmission outage constraint and covertness constraint. The formulated optimization problem is difficult to tackle directly due to the intractable constraints. As such, we first employ conservative approximation to transform a constraint into a deterministic form and then apply the first-order restrictive approximation to transform the optimization problem into a convex form. By applying the successive convex approximation technique, an efficient iterative algorithm is developed to solve the optimization problem. Our examination shows that the developed joint trajectory and transmit power optimization scheme achieves significantly better covert communication performance as compared to a benchmark scheme.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2019.2928949</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Communication ; Covert communication ; Iterative algorithms ; location uncertainty ; Mathematical analysis ; Optimization ; Queuing theory ; Receivers ; Security ; Trajectory ; Trajectory optimization ; transmit power ; Transmitters ; UAV networks ; Unmanned aerial vehicles ; Wireless communication</subject><ispartof>IEEE transactions on signal processing, 2019-08, Vol.67 (16), p.4276-4290</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-de30e54aea373902504c41a96c360e56b710a6752ab76c0906c364fe468693</citedby><cites>FETCH-LOGICAL-c291t-de30e54aea373902504c41a96c360e56b710a6752ab76c0906c364fe468693</cites><orcidid>0000-0002-4586-1926 ; 0000-0002-6767-3328 ; 0000-0003-0073-1965 ; 0000-0001-8803-9951 ; 0000-0002-4346-9349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8764452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8764452$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Xiaobo</creatorcontrib><creatorcontrib>Yan, Shihao</creatorcontrib><creatorcontrib>Hu, Jinsong</creatorcontrib><creatorcontrib>Sun, Jiande</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Shu, Feng</creatorcontrib><title>Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper considers covert communications in the context of unmanned aerial vehicle (UAV) networks, aiming to hide a UAV for transmitting critical information out of an area that is monitored and where communication is not allowed. Specifically, the UAV as a transmitter intends to transmit information to a legitimate receiver (Bob) covertly while avoiding being detected by a warden (Willie), where location uncertainty exists at Bob and/or Willie. In order to enhance the considered covert communication performance, we jointly optimize the UAV's trajectory and transmit power in terms of maximizing the average covert transmission rate from the UAV to Bob subject to transmission outage constraint and covertness constraint. The formulated optimization problem is difficult to tackle directly due to the intractable constraints. As such, we first employ conservative approximation to transform a constraint into a deterministic form and then apply the first-order restrictive approximation to transform the optimization problem into a convex form. By applying the successive convex approximation technique, an efficient iterative algorithm is developed to solve the optimization problem. Our examination shows that the developed joint trajectory and transmit power optimization scheme achieves significantly better covert communication performance as compared to a benchmark scheme.</description><subject>Approximation</subject><subject>Communication</subject><subject>Covert communication</subject><subject>Iterative algorithms</subject><subject>location uncertainty</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Queuing theory</subject><subject>Receivers</subject><subject>Security</subject><subject>Trajectory</subject><subject>Trajectory optimization</subject><subject>transmit power</subject><subject>Transmitters</subject><subject>UAV networks</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEQx4MoWKt3wUvAg6etk8cmm2MpPim0aCveQrrNQoq7qUlWqZ_eXVs8zQz_x8APoUsCI0JA3S5e5yMKRI2oooXi6ggNiOIkAy7FcbdDzrK8kO-n6CzGDQDhXIkBWj571yQ82yZXux-TnG-wr7DBy_HbTcSLYDa2TD7ssGnW_dnE2iU899824MoHPPFfNqRu1HXbuPKvIZ6jk8p8RHtxmEP0cn-3mDxm09nD02Q8zUqqSMrWloHNubGGSaaA5sBLTowSJROdIFaSgBEyp2YlRQkKeoFXlotCKDZE1_vSbfCfrY1Jb3wbmu6fplQUnOVMys4Fe1cZfIzBVnobXG3CThPQPTndkdM9OX0g10Wu9hFnrf23F1JwnlP2CwUSaRE</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Zhou, Xiaobo</creator><creator>Yan, Shihao</creator><creator>Hu, Jinsong</creator><creator>Sun, Jiande</creator><creator>Li, Jun</creator><creator>Shu, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4586-1926</orcidid><orcidid>https://orcid.org/0000-0002-6767-3328</orcidid><orcidid>https://orcid.org/0000-0003-0073-1965</orcidid><orcidid>https://orcid.org/0000-0001-8803-9951</orcidid><orcidid>https://orcid.org/0000-0002-4346-9349</orcidid></search><sort><creationdate>20190815</creationdate><title>Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications</title><author>Zhou, Xiaobo ; Yan, Shihao ; Hu, Jinsong ; Sun, Jiande ; Li, Jun ; Shu, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-de30e54aea373902504c41a96c360e56b710a6752ab76c0906c364fe468693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Communication</topic><topic>Covert communication</topic><topic>Iterative algorithms</topic><topic>location uncertainty</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Queuing theory</topic><topic>Receivers</topic><topic>Security</topic><topic>Trajectory</topic><topic>Trajectory optimization</topic><topic>transmit power</topic><topic>Transmitters</topic><topic>UAV networks</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaobo</creatorcontrib><creatorcontrib>Yan, Shihao</creatorcontrib><creatorcontrib>Hu, Jinsong</creatorcontrib><creatorcontrib>Sun, Jiande</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Shu, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Xiaobo</au><au>Yan, Shihao</au><au>Hu, Jinsong</au><au>Sun, Jiande</au><au>Li, Jun</au><au>Shu, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2019-08-15</date><risdate>2019</risdate><volume>67</volume><issue>16</issue><spage>4276</spage><epage>4290</epage><pages>4276-4290</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper considers covert communications in the context of unmanned aerial vehicle (UAV) networks, aiming to hide a UAV for transmitting critical information out of an area that is monitored and where communication is not allowed. Specifically, the UAV as a transmitter intends to transmit information to a legitimate receiver (Bob) covertly while avoiding being detected by a warden (Willie), where location uncertainty exists at Bob and/or Willie. In order to enhance the considered covert communication performance, we jointly optimize the UAV's trajectory and transmit power in terms of maximizing the average covert transmission rate from the UAV to Bob subject to transmission outage constraint and covertness constraint. The formulated optimization problem is difficult to tackle directly due to the intractable constraints. As such, we first employ conservative approximation to transform a constraint into a deterministic form and then apply the first-order restrictive approximation to transform the optimization problem into a convex form. By applying the successive convex approximation technique, an efficient iterative algorithm is developed to solve the optimization problem. Our examination shows that the developed joint trajectory and transmit power optimization scheme achieves significantly better covert communication performance as compared to a benchmark scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2019.2928949</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4586-1926</orcidid><orcidid>https://orcid.org/0000-0002-6767-3328</orcidid><orcidid>https://orcid.org/0000-0003-0073-1965</orcidid><orcidid>https://orcid.org/0000-0001-8803-9951</orcidid><orcidid>https://orcid.org/0000-0002-4346-9349</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2019-08, Vol.67 (16), p.4276-4290 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2019_2928949 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Communication Covert communication Iterative algorithms location uncertainty Mathematical analysis Optimization Queuing theory Receivers Security Trajectory Trajectory optimization transmit power Transmitters UAV networks Unmanned aerial vehicles Wireless communication |
title | Joint Optimization of a UAV's Trajectory and Transmit Power for Covert Communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Optimization%20of%20a%20UAV's%20Trajectory%20and%20Transmit%20Power%20for%20Covert%20Communications&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Zhou,%20Xiaobo&rft.date=2019-08-15&rft.volume=67&rft.issue=16&rft.spage=4276&rft.epage=4290&rft.pages=4276-4290&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2019.2928949&rft_dat=%3Cproquest_RIE%3E2268435377%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268435377&rft_id=info:pmid/&rft_ieee_id=8764452&rfr_iscdi=true |