Connections Between Spectral Properties of Asymptotic Mappings and Solutions to Wireless Network Problems
In this study, we establish connections between asymptotic functions and properties of solutions to important problems in wireless networks. We start by introducing a class of self-mappings (called asymptotic mappings) constructed with asymptotic functions, and we show that spectral properties of th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2019-05, Vol.67 (10), p.2747-2760 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2760 |
---|---|
container_issue | 10 |
container_start_page | 2747 |
container_title | IEEE transactions on signal processing |
container_volume | 67 |
creator | Cavalcante, Renato L. G. Liao, Qi Stanczak, Slawomir |
description | In this study, we establish connections between asymptotic functions and properties of solutions to important problems in wireless networks. We start by introducing a class of self-mappings (called asymptotic mappings) constructed with asymptotic functions, and we show that spectral properties of these mappings explain the behavior of solutions to some max-min utility optimization problems. For example, in a common family of max-min utility power control problems, we prove that the optimal utility as a function of the power available to transmitters is approximately linear in the low power regime. However, as we move away from this regime, there exists a transition point, easily computed from the spectral radius of an asymptotic mapping, from which gains in utility become increasingly marginal. From these results we derive analogous properties of the transmit energy efficiency. In this study, we also generalize and unify existing approaches for feasibility analysis in wireless networks. Feasibility problems often reduce to determining the existence of the fixed point of a standard interference mapping, and we show that the spectral radius of an asymptotic mapping provides a necessary and sufficient condition for the existence of such a fixed point. We further present a result that determines whether the fixed point satisfies a constraint given in terms of a monotone norm. |
doi_str_mv | 10.1109/TSP.2019.2908147 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2019_2908147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8675967</ieee_id><sourcerecordid>2215079607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b721218ed33c1a953ba2f3d266bd1f92e5ce50d2f68f70241cd195940cc31fd13</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBrztzkrZpLufwC6YONtG70KYn0tk1NcmQ_Xs7Jl6dw-F9nwMPIZfAJgBM3ayWiwlnoCZcsQJSeURGoFJIWCrz42FnmUiyQn6ckrMQ1oxBmqp8RJqZ6zo0sXFdoLcYfxA7uuyHiy9buvCuRx8bDNRZOg27TR9dbAx9Lvu-6T4DLbuaLl27PQCio--NxxZDoC8DzPmvPaNqcRPOyYkt24AXf3NM3u7vVrPHZP768DSbzhPDFcSkkhw4FFgLYaBUmahKbkXN87yqwSqOmcGM1dzmhZWMp2BqUJlKmTECbA1iTK4P3N677y2GqNdu67vhpeYcMiZVzuSQYoeU8S4Ej1b3vtmUfqeB6b1QPQjVe6H6T-hQuTpUGkT8jxe5zFQuxS8ga3M6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215079607</pqid></control><display><type>article</type><title>Connections Between Spectral Properties of Asymptotic Mappings and Solutions to Wireless Network Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Cavalcante, Renato L. G. ; Liao, Qi ; Stanczak, Slawomir</creator><creatorcontrib>Cavalcante, Renato L. G. ; Liao, Qi ; Stanczak, Slawomir</creatorcontrib><description>In this study, we establish connections between asymptotic functions and properties of solutions to important problems in wireless networks. We start by introducing a class of self-mappings (called asymptotic mappings) constructed with asymptotic functions, and we show that spectral properties of these mappings explain the behavior of solutions to some max-min utility optimization problems. For example, in a common family of max-min utility power control problems, we prove that the optimal utility as a function of the power available to transmitters is approximately linear in the low power regime. However, as we move away from this regime, there exists a transition point, easily computed from the spectral radius of an asymptotic mapping, from which gains in utility become increasingly marginal. From these results we derive analogous properties of the transmit energy efficiency. In this study, we also generalize and unify existing approaches for feasibility analysis in wireless networks. Feasibility problems often reduce to determining the existence of the fixed point of a standard interference mapping, and we show that the spectral radius of an asymptotic mapping provides a necessary and sufficient condition for the existence of such a fixed point. We further present a result that determines whether the fixed point satisfies a constraint given in terms of a monotone norm.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2019.2908147</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>asymptotic mappings ; Asymptotic properties ; Energy transmission ; Feasibility studies ; fixed point algorithms ; Interference ; interference functions ; interference management ; Mapping ; nonconvex optimization ; Optimization ; Power control ; Spectra ; Transition points ; Transmitters ; Utility optimization ; Wireless networks</subject><ispartof>IEEE transactions on signal processing, 2019-05, Vol.67 (10), p.2747-2760</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-b721218ed33c1a953ba2f3d266bd1f92e5ce50d2f68f70241cd195940cc31fd13</citedby><cites>FETCH-LOGICAL-c291t-b721218ed33c1a953ba2f3d266bd1f92e5ce50d2f68f70241cd195940cc31fd13</cites><orcidid>0000-0002-8826-7580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8675967$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8675967$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cavalcante, Renato L. G.</creatorcontrib><creatorcontrib>Liao, Qi</creatorcontrib><creatorcontrib>Stanczak, Slawomir</creatorcontrib><title>Connections Between Spectral Properties of Asymptotic Mappings and Solutions to Wireless Network Problems</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this study, we establish connections between asymptotic functions and properties of solutions to important problems in wireless networks. We start by introducing a class of self-mappings (called asymptotic mappings) constructed with asymptotic functions, and we show that spectral properties of these mappings explain the behavior of solutions to some max-min utility optimization problems. For example, in a common family of max-min utility power control problems, we prove that the optimal utility as a function of the power available to transmitters is approximately linear in the low power regime. However, as we move away from this regime, there exists a transition point, easily computed from the spectral radius of an asymptotic mapping, from which gains in utility become increasingly marginal. From these results we derive analogous properties of the transmit energy efficiency. In this study, we also generalize and unify existing approaches for feasibility analysis in wireless networks. Feasibility problems often reduce to determining the existence of the fixed point of a standard interference mapping, and we show that the spectral radius of an asymptotic mapping provides a necessary and sufficient condition for the existence of such a fixed point. We further present a result that determines whether the fixed point satisfies a constraint given in terms of a monotone norm.</description><subject>asymptotic mappings</subject><subject>Asymptotic properties</subject><subject>Energy transmission</subject><subject>Feasibility studies</subject><subject>fixed point algorithms</subject><subject>Interference</subject><subject>interference functions</subject><subject>interference management</subject><subject>Mapping</subject><subject>nonconvex optimization</subject><subject>Optimization</subject><subject>Power control</subject><subject>Spectra</subject><subject>Transition points</subject><subject>Transmitters</subject><subject>Utility optimization</subject><subject>Wireless networks</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcBrztzkrZpLufwC6YONtG70KYn0tk1NcmQ_Xs7Jl6dw-F9nwMPIZfAJgBM3ayWiwlnoCZcsQJSeURGoFJIWCrz42FnmUiyQn6ckrMQ1oxBmqp8RJqZ6zo0sXFdoLcYfxA7uuyHiy9buvCuRx8bDNRZOg27TR9dbAx9Lvu-6T4DLbuaLl27PQCio--NxxZDoC8DzPmvPaNqcRPOyYkt24AXf3NM3u7vVrPHZP768DSbzhPDFcSkkhw4FFgLYaBUmahKbkXN87yqwSqOmcGM1dzmhZWMp2BqUJlKmTECbA1iTK4P3N677y2GqNdu67vhpeYcMiZVzuSQYoeU8S4Ej1b3vtmUfqeB6b1QPQjVe6H6T-hQuTpUGkT8jxe5zFQuxS8ga3M6</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Cavalcante, Renato L. G.</creator><creator>Liao, Qi</creator><creator>Stanczak, Slawomir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8826-7580</orcidid></search><sort><creationdate>20190515</creationdate><title>Connections Between Spectral Properties of Asymptotic Mappings and Solutions to Wireless Network Problems</title><author>Cavalcante, Renato L. G. ; Liao, Qi ; Stanczak, Slawomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b721218ed33c1a953ba2f3d266bd1f92e5ce50d2f68f70241cd195940cc31fd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>asymptotic mappings</topic><topic>Asymptotic properties</topic><topic>Energy transmission</topic><topic>Feasibility studies</topic><topic>fixed point algorithms</topic><topic>Interference</topic><topic>interference functions</topic><topic>interference management</topic><topic>Mapping</topic><topic>nonconvex optimization</topic><topic>Optimization</topic><topic>Power control</topic><topic>Spectra</topic><topic>Transition points</topic><topic>Transmitters</topic><topic>Utility optimization</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavalcante, Renato L. G.</creatorcontrib><creatorcontrib>Liao, Qi</creatorcontrib><creatorcontrib>Stanczak, Slawomir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cavalcante, Renato L. G.</au><au>Liao, Qi</au><au>Stanczak, Slawomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connections Between Spectral Properties of Asymptotic Mappings and Solutions to Wireless Network Problems</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2019-05-15</date><risdate>2019</risdate><volume>67</volume><issue>10</issue><spage>2747</spage><epage>2760</epage><pages>2747-2760</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this study, we establish connections between asymptotic functions and properties of solutions to important problems in wireless networks. We start by introducing a class of self-mappings (called asymptotic mappings) constructed with asymptotic functions, and we show that spectral properties of these mappings explain the behavior of solutions to some max-min utility optimization problems. For example, in a common family of max-min utility power control problems, we prove that the optimal utility as a function of the power available to transmitters is approximately linear in the low power regime. However, as we move away from this regime, there exists a transition point, easily computed from the spectral radius of an asymptotic mapping, from which gains in utility become increasingly marginal. From these results we derive analogous properties of the transmit energy efficiency. In this study, we also generalize and unify existing approaches for feasibility analysis in wireless networks. Feasibility problems often reduce to determining the existence of the fixed point of a standard interference mapping, and we show that the spectral radius of an asymptotic mapping provides a necessary and sufficient condition for the existence of such a fixed point. We further present a result that determines whether the fixed point satisfies a constraint given in terms of a monotone norm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2019.2908147</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8826-7580</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2019-05, Vol.67 (10), p.2747-2760 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2019_2908147 |
source | IEEE Electronic Library (IEL) |
subjects | asymptotic mappings Asymptotic properties Energy transmission Feasibility studies fixed point algorithms Interference interference functions interference management Mapping nonconvex optimization Optimization Power control Spectra Transition points Transmitters Utility optimization Wireless networks |
title | Connections Between Spectral Properties of Asymptotic Mappings and Solutions to Wireless Network Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connections%20Between%20Spectral%20Properties%20of%20Asymptotic%20Mappings%20and%20Solutions%20to%20Wireless%20Network%20Problems&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Cavalcante,%20Renato%20L.%20G.&rft.date=2019-05-15&rft.volume=67&rft.issue=10&rft.spage=2747&rft.epage=2760&rft.pages=2747-2760&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2019.2908147&rft_dat=%3Cproquest_RIE%3E2215079607%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215079607&rft_id=info:pmid/&rft_ieee_id=8675967&rfr_iscdi=true |