Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers
This paper proposes a decentralized method for estimation of dynamic states of a power system. The method remains robust to time-synchronization errors and high noise levels in measurements. Robustness of the method has been achieved by incorporating internal angle in the dynamic model used for esti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2018-03, Vol.66 (6), p.1541-1550 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1550 |
---|---|
container_issue | 6 |
container_start_page | 1541 |
container_title | IEEE transactions on signal processing |
container_volume | 66 |
creator | Singh, Abhinav Kumar Pal, Bikash C. |
description | This paper proposes a decentralized method for estimation of dynamic states of a power system. The method remains robust to time-synchronization errors and high noise levels in measurements. Robustness of the method has been achieved by incorporating internal angle in the dynamic model used for estimation and by decoupling the estimation process into two stages with continuous updation of measurement-noise variances. Additionally, the proposed estimation method does not need measurements obtained from phasor measurement units; instead, it just requires analog measurements of voltages and currents directly acquired from instrument transformers. This is achieved through statistical signal processing of analog voltages and currents to obtain their magnitudes and frequencies, followed by application of unscented Kalman filtering for nonlinear estimation. The robustness and feasibility of the method have been demonstrated on a benchmark power system model. |
doi_str_mv | 10.1109/TSP.2017.2788424 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2017_2788424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8249743</ieee_id><sourcerecordid>10_1109_TSP_2017_2788424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-a9e9d118201d0bf5f83a055a3624ab29df8d30ce984979487c4dd602acd677013</originalsourceid><addsrcrecordid>eNo9kE9LAzEUxIMoWKt3wUu-wNaXP7tJjtLWWihYbAsehCVNshLpZiVJkfrp3dLiad5hZt7wQ-iewIgQUI_r1XJEgYgRFVJyyi_QgChOCuCiuuxvKFlRSvF-jW5S-gIgnKtqgD4mzriQo975X2fxW7fdp4wnh6Bbb_Aq6-zwNGXf6uy7gH3Ay-7HRbw6pOzahDfJh088DynHfdsX4XXUITVdbF1Mt-iq0bvk7s46RJvn6Xr8UixeZ_Px06IwDMpcaOWUJUT28y1sm7KRTENZalZRrrdU2UZaBsYpyZVQXArDra2AamMrIYCwIYJTr4ldStE19XfsF8dDTaA-0ql7OvWRTn2m00ceThHvnPu3S9p_4Iz9AXNrYlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers</title><source>IEEE Electronic Library (IEL)</source><creator>Singh, Abhinav Kumar ; Pal, Bikash C.</creator><creatorcontrib>Singh, Abhinav Kumar ; Pal, Bikash C.</creatorcontrib><description>This paper proposes a decentralized method for estimation of dynamic states of a power system. The method remains robust to time-synchronization errors and high noise levels in measurements. Robustness of the method has been achieved by incorporating internal angle in the dynamic model used for estimation and by decoupling the estimation process into two stages with continuous updation of measurement-noise variances. Additionally, the proposed estimation method does not need measurements obtained from phasor measurement units; instead, it just requires analog measurements of voltages and currents directly acquired from instrument transformers. This is achieved through statistical signal processing of analog voltages and currents to obtain their magnitudes and frequencies, followed by application of unscented Kalman filtering for nonlinear estimation. The robustness and feasibility of the method have been demonstrated on a benchmark power system model.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2788424</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decentralized ; discrete-time Fourier transform (DFT) ; dynamic state estimation (DSE) ; Estimation ; Generators ; Hanning-window ; instrument transformers ; internal angle ; phasor measurement unit (PMU) ; Phasor measurement units ; Power system dynamics ; pseudo-input ; Rotors ; statistical signal processing ; Synchronization ; time-synchronization error ; unscented Kalman filtering (UKF) ; Voltage measurement</subject><ispartof>IEEE transactions on signal processing, 2018-03, Vol.66 (6), p.1541-1550</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-a9e9d118201d0bf5f83a055a3624ab29df8d30ce984979487c4dd602acd677013</citedby><cites>FETCH-LOGICAL-c305t-a9e9d118201d0bf5f83a055a3624ab29df8d30ce984979487c4dd602acd677013</cites><orcidid>0000-0002-9655-239X ; 0000-0003-3376-6435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8249743$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Singh, Abhinav Kumar</creatorcontrib><creatorcontrib>Pal, Bikash C.</creatorcontrib><title>Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper proposes a decentralized method for estimation of dynamic states of a power system. The method remains robust to time-synchronization errors and high noise levels in measurements. Robustness of the method has been achieved by incorporating internal angle in the dynamic model used for estimation and by decoupling the estimation process into two stages with continuous updation of measurement-noise variances. Additionally, the proposed estimation method does not need measurements obtained from phasor measurement units; instead, it just requires analog measurements of voltages and currents directly acquired from instrument transformers. This is achieved through statistical signal processing of analog voltages and currents to obtain their magnitudes and frequencies, followed by application of unscented Kalman filtering for nonlinear estimation. The robustness and feasibility of the method have been demonstrated on a benchmark power system model.</description><subject>Decentralized</subject><subject>discrete-time Fourier transform (DFT)</subject><subject>dynamic state estimation (DSE)</subject><subject>Estimation</subject><subject>Generators</subject><subject>Hanning-window</subject><subject>instrument transformers</subject><subject>internal angle</subject><subject>phasor measurement unit (PMU)</subject><subject>Phasor measurement units</subject><subject>Power system dynamics</subject><subject>pseudo-input</subject><subject>Rotors</subject><subject>statistical signal processing</subject><subject>Synchronization</subject><subject>time-synchronization error</subject><subject>unscented Kalman filtering (UKF)</subject><subject>Voltage measurement</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEUxIMoWKt3wUu-wNaXP7tJjtLWWihYbAsehCVNshLpZiVJkfrp3dLiad5hZt7wQ-iewIgQUI_r1XJEgYgRFVJyyi_QgChOCuCiuuxvKFlRSvF-jW5S-gIgnKtqgD4mzriQo975X2fxW7fdp4wnh6Bbb_Aq6-zwNGXf6uy7gH3Ay-7HRbw6pOzahDfJh088DynHfdsX4XXUITVdbF1Mt-iq0bvk7s46RJvn6Xr8UixeZ_Px06IwDMpcaOWUJUT28y1sm7KRTENZalZRrrdU2UZaBsYpyZVQXArDra2AamMrIYCwIYJTr4ldStE19XfsF8dDTaA-0ql7OvWRTn2m00ceThHvnPu3S9p_4Iz9AXNrYlM</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Singh, Abhinav Kumar</creator><creator>Pal, Bikash C.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9655-239X</orcidid><orcidid>https://orcid.org/0000-0003-3376-6435</orcidid></search><sort><creationdate>20180315</creationdate><title>Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers</title><author>Singh, Abhinav Kumar ; Pal, Bikash C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-a9e9d118201d0bf5f83a055a3624ab29df8d30ce984979487c4dd602acd677013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Decentralized</topic><topic>discrete-time Fourier transform (DFT)</topic><topic>dynamic state estimation (DSE)</topic><topic>Estimation</topic><topic>Generators</topic><topic>Hanning-window</topic><topic>instrument transformers</topic><topic>internal angle</topic><topic>phasor measurement unit (PMU)</topic><topic>Phasor measurement units</topic><topic>Power system dynamics</topic><topic>pseudo-input</topic><topic>Rotors</topic><topic>statistical signal processing</topic><topic>Synchronization</topic><topic>time-synchronization error</topic><topic>unscented Kalman filtering (UKF)</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Abhinav Kumar</creatorcontrib><creatorcontrib>Pal, Bikash C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Abhinav Kumar</au><au>Pal, Bikash C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-03-15</date><risdate>2018</risdate><volume>66</volume><issue>6</issue><spage>1541</spage><epage>1550</epage><pages>1541-1550</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper proposes a decentralized method for estimation of dynamic states of a power system. The method remains robust to time-synchronization errors and high noise levels in measurements. Robustness of the method has been achieved by incorporating internal angle in the dynamic model used for estimation and by decoupling the estimation process into two stages with continuous updation of measurement-noise variances. Additionally, the proposed estimation method does not need measurements obtained from phasor measurement units; instead, it just requires analog measurements of voltages and currents directly acquired from instrument transformers. This is achieved through statistical signal processing of analog voltages and currents to obtain their magnitudes and frequencies, followed by application of unscented Kalman filtering for nonlinear estimation. The robustness and feasibility of the method have been demonstrated on a benchmark power system model.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2017.2788424</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9655-239X</orcidid><orcidid>https://orcid.org/0000-0003-3376-6435</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2018-03, Vol.66 (6), p.1541-1550 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2017_2788424 |
source | IEEE Electronic Library (IEL) |
subjects | Decentralized discrete-time Fourier transform (DFT) dynamic state estimation (DSE) Estimation Generators Hanning-window instrument transformers internal angle phasor measurement unit (PMU) Phasor measurement units Power system dynamics pseudo-input Rotors statistical signal processing Synchronization time-synchronization error unscented Kalman filtering (UKF) Voltage measurement |
title | Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Robust%20Dynamic%20State%20Estimation%20in%20Power%20Systems%20Using%20Instrument%20Transformers&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Singh,%20Abhinav%20Kumar&rft.date=2018-03-15&rft.volume=66&rft.issue=6&rft.spage=1541&rft.epage=1550&rft.pages=1541-1550&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2788424&rft_dat=%3Ccrossref_ieee_%3E10_1109_TSP_2017_2788424%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8249743&rfr_iscdi=true |