Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers

This paper proposes a decentralized method for estimation of dynamic states of a power system. The method remains robust to time-synchronization errors and high noise levels in measurements. Robustness of the method has been achieved by incorporating internal angle in the dynamic model used for esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2018-03, Vol.66 (6), p.1541-1550
Hauptverfasser: Singh, Abhinav Kumar, Pal, Bikash C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1550
container_issue 6
container_start_page 1541
container_title IEEE transactions on signal processing
container_volume 66
creator Singh, Abhinav Kumar
Pal, Bikash C.
description This paper proposes a decentralized method for estimation of dynamic states of a power system. The method remains robust to time-synchronization errors and high noise levels in measurements. Robustness of the method has been achieved by incorporating internal angle in the dynamic model used for estimation and by decoupling the estimation process into two stages with continuous updation of measurement-noise variances. Additionally, the proposed estimation method does not need measurements obtained from phasor measurement units; instead, it just requires analog measurements of voltages and currents directly acquired from instrument transformers. This is achieved through statistical signal processing of analog voltages and currents to obtain their magnitudes and frequencies, followed by application of unscented Kalman filtering for nonlinear estimation. The robustness and feasibility of the method have been demonstrated on a benchmark power system model.
doi_str_mv 10.1109/TSP.2017.2788424
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2017_2788424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8249743</ieee_id><sourcerecordid>10_1109_TSP_2017_2788424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-a9e9d118201d0bf5f83a055a3624ab29df8d30ce984979487c4dd602acd677013</originalsourceid><addsrcrecordid>eNo9kE9LAzEUxIMoWKt3wUu-wNaXP7tJjtLWWihYbAsehCVNshLpZiVJkfrp3dLiad5hZt7wQ-iewIgQUI_r1XJEgYgRFVJyyi_QgChOCuCiuuxvKFlRSvF-jW5S-gIgnKtqgD4mzriQo975X2fxW7fdp4wnh6Bbb_Aq6-zwNGXf6uy7gH3Ay-7HRbw6pOzahDfJh088DynHfdsX4XXUITVdbF1Mt-iq0bvk7s46RJvn6Xr8UixeZ_Px06IwDMpcaOWUJUT28y1sm7KRTENZalZRrrdU2UZaBsYpyZVQXArDra2AamMrIYCwIYJTr4ldStE19XfsF8dDTaA-0ql7OvWRTn2m00ceThHvnPu3S9p_4Iz9AXNrYlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers</title><source>IEEE Electronic Library (IEL)</source><creator>Singh, Abhinav Kumar ; Pal, Bikash C.</creator><creatorcontrib>Singh, Abhinav Kumar ; Pal, Bikash C.</creatorcontrib><description>This paper proposes a decentralized method for estimation of dynamic states of a power system. The method remains robust to time-synchronization errors and high noise levels in measurements. Robustness of the method has been achieved by incorporating internal angle in the dynamic model used for estimation and by decoupling the estimation process into two stages with continuous updation of measurement-noise variances. Additionally, the proposed estimation method does not need measurements obtained from phasor measurement units; instead, it just requires analog measurements of voltages and currents directly acquired from instrument transformers. This is achieved through statistical signal processing of analog voltages and currents to obtain their magnitudes and frequencies, followed by application of unscented Kalman filtering for nonlinear estimation. The robustness and feasibility of the method have been demonstrated on a benchmark power system model.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2788424</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Decentralized ; discrete-time Fourier transform (DFT) ; dynamic state estimation (DSE) ; Estimation ; Generators ; Hanning-window ; instrument transformers ; internal angle ; phasor measurement unit (PMU) ; Phasor measurement units ; Power system dynamics ; pseudo-input ; Rotors ; statistical signal processing ; Synchronization ; time-synchronization error ; unscented Kalman filtering (UKF) ; Voltage measurement</subject><ispartof>IEEE transactions on signal processing, 2018-03, Vol.66 (6), p.1541-1550</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-a9e9d118201d0bf5f83a055a3624ab29df8d30ce984979487c4dd602acd677013</citedby><cites>FETCH-LOGICAL-c305t-a9e9d118201d0bf5f83a055a3624ab29df8d30ce984979487c4dd602acd677013</cites><orcidid>0000-0002-9655-239X ; 0000-0003-3376-6435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8249743$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Singh, Abhinav Kumar</creatorcontrib><creatorcontrib>Pal, Bikash C.</creatorcontrib><title>Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper proposes a decentralized method for estimation of dynamic states of a power system. The method remains robust to time-synchronization errors and high noise levels in measurements. Robustness of the method has been achieved by incorporating internal angle in the dynamic model used for estimation and by decoupling the estimation process into two stages with continuous updation of measurement-noise variances. Additionally, the proposed estimation method does not need measurements obtained from phasor measurement units; instead, it just requires analog measurements of voltages and currents directly acquired from instrument transformers. This is achieved through statistical signal processing of analog voltages and currents to obtain their magnitudes and frequencies, followed by application of unscented Kalman filtering for nonlinear estimation. The robustness and feasibility of the method have been demonstrated on a benchmark power system model.</description><subject>Decentralized</subject><subject>discrete-time Fourier transform (DFT)</subject><subject>dynamic state estimation (DSE)</subject><subject>Estimation</subject><subject>Generators</subject><subject>Hanning-window</subject><subject>instrument transformers</subject><subject>internal angle</subject><subject>phasor measurement unit (PMU)</subject><subject>Phasor measurement units</subject><subject>Power system dynamics</subject><subject>pseudo-input</subject><subject>Rotors</subject><subject>statistical signal processing</subject><subject>Synchronization</subject><subject>time-synchronization error</subject><subject>unscented Kalman filtering (UKF)</subject><subject>Voltage measurement</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEUxIMoWKt3wUu-wNaXP7tJjtLWWihYbAsehCVNshLpZiVJkfrp3dLiad5hZt7wQ-iewIgQUI_r1XJEgYgRFVJyyi_QgChOCuCiuuxvKFlRSvF-jW5S-gIgnKtqgD4mzriQo975X2fxW7fdp4wnh6Bbb_Aq6-zwNGXf6uy7gH3Ay-7HRbw6pOzahDfJh088DynHfdsX4XXUITVdbF1Mt-iq0bvk7s46RJvn6Xr8UixeZ_Px06IwDMpcaOWUJUT28y1sm7KRTENZalZRrrdU2UZaBsYpyZVQXArDra2AamMrIYCwIYJTr4ldStE19XfsF8dDTaA-0ql7OvWRTn2m00ceThHvnPu3S9p_4Iz9AXNrYlM</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Singh, Abhinav Kumar</creator><creator>Pal, Bikash C.</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9655-239X</orcidid><orcidid>https://orcid.org/0000-0003-3376-6435</orcidid></search><sort><creationdate>20180315</creationdate><title>Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers</title><author>Singh, Abhinav Kumar ; Pal, Bikash C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-a9e9d118201d0bf5f83a055a3624ab29df8d30ce984979487c4dd602acd677013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Decentralized</topic><topic>discrete-time Fourier transform (DFT)</topic><topic>dynamic state estimation (DSE)</topic><topic>Estimation</topic><topic>Generators</topic><topic>Hanning-window</topic><topic>instrument transformers</topic><topic>internal angle</topic><topic>phasor measurement unit (PMU)</topic><topic>Phasor measurement units</topic><topic>Power system dynamics</topic><topic>pseudo-input</topic><topic>Rotors</topic><topic>statistical signal processing</topic><topic>Synchronization</topic><topic>time-synchronization error</topic><topic>unscented Kalman filtering (UKF)</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Abhinav Kumar</creatorcontrib><creatorcontrib>Pal, Bikash C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Abhinav Kumar</au><au>Pal, Bikash C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-03-15</date><risdate>2018</risdate><volume>66</volume><issue>6</issue><spage>1541</spage><epage>1550</epage><pages>1541-1550</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper proposes a decentralized method for estimation of dynamic states of a power system. The method remains robust to time-synchronization errors and high noise levels in measurements. Robustness of the method has been achieved by incorporating internal angle in the dynamic model used for estimation and by decoupling the estimation process into two stages with continuous updation of measurement-noise variances. Additionally, the proposed estimation method does not need measurements obtained from phasor measurement units; instead, it just requires analog measurements of voltages and currents directly acquired from instrument transformers. This is achieved through statistical signal processing of analog voltages and currents to obtain their magnitudes and frequencies, followed by application of unscented Kalman filtering for nonlinear estimation. The robustness and feasibility of the method have been demonstrated on a benchmark power system model.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2017.2788424</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9655-239X</orcidid><orcidid>https://orcid.org/0000-0003-3376-6435</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2018-03, Vol.66 (6), p.1541-1550
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2017_2788424
source IEEE Electronic Library (IEL)
subjects Decentralized
discrete-time Fourier transform (DFT)
dynamic state estimation (DSE)
Estimation
Generators
Hanning-window
instrument transformers
internal angle
phasor measurement unit (PMU)
Phasor measurement units
Power system dynamics
pseudo-input
Rotors
statistical signal processing
Synchronization
time-synchronization error
unscented Kalman filtering (UKF)
Voltage measurement
title Decentralized Robust Dynamic State Estimation in Power Systems Using Instrument Transformers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decentralized%20Robust%20Dynamic%20State%20Estimation%20in%20Power%20Systems%20Using%20Instrument%20Transformers&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Singh,%20Abhinav%20Kumar&rft.date=2018-03-15&rft.volume=66&rft.issue=6&rft.spage=1541&rft.epage=1550&rft.pages=1541-1550&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2788424&rft_dat=%3Ccrossref_ieee_%3E10_1109_TSP_2017_2788424%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8249743&rfr_iscdi=true