Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data

Novel physical insights are provided into the performances of strictly linear (SL) and widely linear (WL) estimators of the generality of complex-valued data, both proper (second order circular) and improper (second-order noncircular). This is achieved by first performing a novel complementary mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2018-01, Vol.66 (2), p.507-514
Hauptverfasser: Yili Xia, Mandic, Danilo P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 2
container_start_page 507
container_title IEEE transactions on signal processing
container_volume 66
creator Yili Xia
Mandic, Danilo P.
description Novel physical insights are provided into the performances of strictly linear (SL) and widely linear (WL) estimators of the generality of complex-valued data, both proper (second order circular) and improper (second-order noncircular). This is achieved by first performing a novel complementary mean square error (CMSE) analysis, in order to quantify the degrees of improperness (second order noncircularity) of the SL and WL estimation errors. The exact bounds on the CMSE difference between the SL and WL estimators are investigated to show that only a joint consideration of the standard MSE analysis and the proposed CMSE analysis has enough degrees of freedom for a rigorous account of the performance of WL and SL estimators. This also makes it possible to rigourously quantify the contributions to the WL performance advantage from the individual real and imaginary channels, an important finding not possible to obtain by using the standard MSE analysis only.
doi_str_mv 10.1109/TSP.2017.2773428
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2017_2773428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8106751</ieee_id><sourcerecordid>10_1109_TSP_2017_2773428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-f54bb8c80ca13da9efcc9837e926f40ea5bf02152134ab8dba23f31e8f0ee76b3</originalsourceid><addsrcrecordid>eNpFkFtLw0AQhRdRsFbfBV_2DyTOXpLdPNZaL1Cw0Io-GTabWY00Sdndgv33prTo0xzmnDMMHyHXDFLGoLhdLRcpB6ZSrpSQXJ-QESskS0Cq_HTQkIkk0-r9nFyE8A3ApCzyEfmYbD9b7CLWdIHe9b41nUV612-7OtC-o8voGxvXOzpvOjSemq6mb02N_5tZiE1rYu_DYMQvOu3bzRp_6L2J5pKcObMOeHWcY_L6MFtNn5L5y-PzdDJPLM9FTFwmq0pbDdYwUZsCnbWFFgoLnjsJaLLKAWcZZ0KaSteV4cIJhtoBosorMSZwuGt9H4JHV2788JTflQzKPZ9y4FPu-ZRHPkPl5lBpEPEvrhnkKmPiFwXjYyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data</title><source>IEEE Electronic Library Online</source><creator>Yili Xia ; Mandic, Danilo P.</creator><creatorcontrib>Yili Xia ; Mandic, Danilo P.</creatorcontrib><description>Novel physical insights are provided into the performances of strictly linear (SL) and widely linear (WL) estimators of the generality of complex-valued data, both proper (second order circular) and improper (second-order noncircular). This is achieved by first performing a novel complementary mean square error (CMSE) analysis, in order to quantify the degrees of improperness (second order noncircularity) of the SL and WL estimation errors. The exact bounds on the CMSE difference between the SL and WL estimators are investigated to show that only a joint consideration of the standard MSE analysis and the proposed CMSE analysis has enough degrees of freedom for a rigorous account of the performance of WL and SL estimators. This also makes it possible to rigourously quantify the contributions to the WL performance advantage from the individual real and imaginary channels, an important finding not possible to obtain by using the standard MSE analysis only.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2773428</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>augmented complex statistics ; complementary mean square error (CMSE) ; Covariance matrices ; Estimation error ; improperness (second order noncircularity) ; Mean square error methods ; Random variables ; real-imaginary analysis ; Signal processing ; Widely linear model</subject><ispartof>IEEE transactions on signal processing, 2018-01, Vol.66 (2), p.507-514</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-f54bb8c80ca13da9efcc9837e926f40ea5bf02152134ab8dba23f31e8f0ee76b3</citedby><cites>FETCH-LOGICAL-c263t-f54bb8c80ca13da9efcc9837e926f40ea5bf02152134ab8dba23f31e8f0ee76b3</cites><orcidid>0000-0002-4402-8131 ; 0000-0001-8432-3963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8106751$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8106751$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yili Xia</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><title>Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Novel physical insights are provided into the performances of strictly linear (SL) and widely linear (WL) estimators of the generality of complex-valued data, both proper (second order circular) and improper (second-order noncircular). This is achieved by first performing a novel complementary mean square error (CMSE) analysis, in order to quantify the degrees of improperness (second order noncircularity) of the SL and WL estimation errors. The exact bounds on the CMSE difference between the SL and WL estimators are investigated to show that only a joint consideration of the standard MSE analysis and the proposed CMSE analysis has enough degrees of freedom for a rigorous account of the performance of WL and SL estimators. This also makes it possible to rigourously quantify the contributions to the WL performance advantage from the individual real and imaginary channels, an important finding not possible to obtain by using the standard MSE analysis only.</description><subject>augmented complex statistics</subject><subject>complementary mean square error (CMSE)</subject><subject>Covariance matrices</subject><subject>Estimation error</subject><subject>improperness (second order noncircularity)</subject><subject>Mean square error methods</subject><subject>Random variables</subject><subject>real-imaginary analysis</subject><subject>Signal processing</subject><subject>Widely linear model</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkFtLw0AQhRdRsFbfBV_2DyTOXpLdPNZaL1Cw0Io-GTabWY00Sdndgv33prTo0xzmnDMMHyHXDFLGoLhdLRcpB6ZSrpSQXJ-QESskS0Cq_HTQkIkk0-r9nFyE8A3ApCzyEfmYbD9b7CLWdIHe9b41nUV612-7OtC-o8voGxvXOzpvOjSemq6mb02N_5tZiE1rYu_DYMQvOu3bzRp_6L2J5pKcObMOeHWcY_L6MFtNn5L5y-PzdDJPLM9FTFwmq0pbDdYwUZsCnbWFFgoLnjsJaLLKAWcZZ0KaSteV4cIJhtoBosorMSZwuGt9H4JHV2788JTflQzKPZ9y4FPu-ZRHPkPl5lBpEPEvrhnkKmPiFwXjYyw</recordid><startdate>20180115</startdate><enddate>20180115</enddate><creator>Yili Xia</creator><creator>Mandic, Danilo P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4402-8131</orcidid><orcidid>https://orcid.org/0000-0001-8432-3963</orcidid></search><sort><creationdate>20180115</creationdate><title>Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data</title><author>Yili Xia ; Mandic, Danilo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-f54bb8c80ca13da9efcc9837e926f40ea5bf02152134ab8dba23f31e8f0ee76b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>augmented complex statistics</topic><topic>complementary mean square error (CMSE)</topic><topic>Covariance matrices</topic><topic>Estimation error</topic><topic>improperness (second order noncircularity)</topic><topic>Mean square error methods</topic><topic>Random variables</topic><topic>real-imaginary analysis</topic><topic>Signal processing</topic><topic>Widely linear model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yili Xia</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yili Xia</au><au>Mandic, Danilo P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-01-15</date><risdate>2018</risdate><volume>66</volume><issue>2</issue><spage>507</spage><epage>514</epage><pages>507-514</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Novel physical insights are provided into the performances of strictly linear (SL) and widely linear (WL) estimators of the generality of complex-valued data, both proper (second order circular) and improper (second-order noncircular). This is achieved by first performing a novel complementary mean square error (CMSE) analysis, in order to quantify the degrees of improperness (second order noncircularity) of the SL and WL estimation errors. The exact bounds on the CMSE difference between the SL and WL estimators are investigated to show that only a joint consideration of the standard MSE analysis and the proposed CMSE analysis has enough degrees of freedom for a rigorous account of the performance of WL and SL estimators. This also makes it possible to rigourously quantify the contributions to the WL performance advantage from the individual real and imaginary channels, an important finding not possible to obtain by using the standard MSE analysis only.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2017.2773428</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4402-8131</orcidid><orcidid>https://orcid.org/0000-0001-8432-3963</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2018-01, Vol.66 (2), p.507-514
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2017_2773428
source IEEE Electronic Library Online
subjects augmented complex statistics
complementary mean square error (CMSE)
Covariance matrices
Estimation error
improperness (second order noncircularity)
Mean square error methods
Random variables
real-imaginary analysis
Signal processing
Widely linear model
title Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20Performance%20Bounds%20on%20Strictly%20Linear%20and%20Widely%20Linear%20Estimators%20With%20Complex%20Data&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yili%20Xia&rft.date=2018-01-15&rft.volume=66&rft.issue=2&rft.spage=507&rft.epage=514&rft.pages=507-514&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2773428&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2017_2773428%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8106751&rfr_iscdi=true