Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data
Novel physical insights are provided into the performances of strictly linear (SL) and widely linear (WL) estimators of the generality of complex-valued data, both proper (second order circular) and improper (second-order noncircular). This is achieved by first performing a novel complementary mean...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2018-01, Vol.66 (2), p.507-514 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 2 |
container_start_page | 507 |
container_title | IEEE transactions on signal processing |
container_volume | 66 |
creator | Yili Xia Mandic, Danilo P. |
description | Novel physical insights are provided into the performances of strictly linear (SL) and widely linear (WL) estimators of the generality of complex-valued data, both proper (second order circular) and improper (second-order noncircular). This is achieved by first performing a novel complementary mean square error (CMSE) analysis, in order to quantify the degrees of improperness (second order noncircularity) of the SL and WL estimation errors. The exact bounds on the CMSE difference between the SL and WL estimators are investigated to show that only a joint consideration of the standard MSE analysis and the proposed CMSE analysis has enough degrees of freedom for a rigorous account of the performance of WL and SL estimators. This also makes it possible to rigourously quantify the contributions to the WL performance advantage from the individual real and imaginary channels, an important finding not possible to obtain by using the standard MSE analysis only. |
doi_str_mv | 10.1109/TSP.2017.2773428 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2017_2773428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8106751</ieee_id><sourcerecordid>10_1109_TSP_2017_2773428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-f54bb8c80ca13da9efcc9837e926f40ea5bf02152134ab8dba23f31e8f0ee76b3</originalsourceid><addsrcrecordid>eNpFkFtLw0AQhRdRsFbfBV_2DyTOXpLdPNZaL1Cw0Io-GTabWY00Sdndgv33prTo0xzmnDMMHyHXDFLGoLhdLRcpB6ZSrpSQXJ-QESskS0Cq_HTQkIkk0-r9nFyE8A3ApCzyEfmYbD9b7CLWdIHe9b41nUV612-7OtC-o8voGxvXOzpvOjSemq6mb02N_5tZiE1rYu_DYMQvOu3bzRp_6L2J5pKcObMOeHWcY_L6MFtNn5L5y-PzdDJPLM9FTFwmq0pbDdYwUZsCnbWFFgoLnjsJaLLKAWcZZ0KaSteV4cIJhtoBosorMSZwuGt9H4JHV2788JTflQzKPZ9y4FPu-ZRHPkPl5lBpEPEvrhnkKmPiFwXjYyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data</title><source>IEEE Electronic Library Online</source><creator>Yili Xia ; Mandic, Danilo P.</creator><creatorcontrib>Yili Xia ; Mandic, Danilo P.</creatorcontrib><description>Novel physical insights are provided into the performances of strictly linear (SL) and widely linear (WL) estimators of the generality of complex-valued data, both proper (second order circular) and improper (second-order noncircular). This is achieved by first performing a novel complementary mean square error (CMSE) analysis, in order to quantify the degrees of improperness (second order noncircularity) of the SL and WL estimation errors. The exact bounds on the CMSE difference between the SL and WL estimators are investigated to show that only a joint consideration of the standard MSE analysis and the proposed CMSE analysis has enough degrees of freedom for a rigorous account of the performance of WL and SL estimators. This also makes it possible to rigourously quantify the contributions to the WL performance advantage from the individual real and imaginary channels, an important finding not possible to obtain by using the standard MSE analysis only.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2773428</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>augmented complex statistics ; complementary mean square error (CMSE) ; Covariance matrices ; Estimation error ; improperness (second order noncircularity) ; Mean square error methods ; Random variables ; real-imaginary analysis ; Signal processing ; Widely linear model</subject><ispartof>IEEE transactions on signal processing, 2018-01, Vol.66 (2), p.507-514</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-f54bb8c80ca13da9efcc9837e926f40ea5bf02152134ab8dba23f31e8f0ee76b3</citedby><cites>FETCH-LOGICAL-c263t-f54bb8c80ca13da9efcc9837e926f40ea5bf02152134ab8dba23f31e8f0ee76b3</cites><orcidid>0000-0002-4402-8131 ; 0000-0001-8432-3963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8106751$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8106751$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yili Xia</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><title>Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Novel physical insights are provided into the performances of strictly linear (SL) and widely linear (WL) estimators of the generality of complex-valued data, both proper (second order circular) and improper (second-order noncircular). This is achieved by first performing a novel complementary mean square error (CMSE) analysis, in order to quantify the degrees of improperness (second order noncircularity) of the SL and WL estimation errors. The exact bounds on the CMSE difference between the SL and WL estimators are investigated to show that only a joint consideration of the standard MSE analysis and the proposed CMSE analysis has enough degrees of freedom for a rigorous account of the performance of WL and SL estimators. This also makes it possible to rigourously quantify the contributions to the WL performance advantage from the individual real and imaginary channels, an important finding not possible to obtain by using the standard MSE analysis only.</description><subject>augmented complex statistics</subject><subject>complementary mean square error (CMSE)</subject><subject>Covariance matrices</subject><subject>Estimation error</subject><subject>improperness (second order noncircularity)</subject><subject>Mean square error methods</subject><subject>Random variables</subject><subject>real-imaginary analysis</subject><subject>Signal processing</subject><subject>Widely linear model</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkFtLw0AQhRdRsFbfBV_2DyTOXpLdPNZaL1Cw0Io-GTabWY00Sdndgv33prTo0xzmnDMMHyHXDFLGoLhdLRcpB6ZSrpSQXJ-QESskS0Cq_HTQkIkk0-r9nFyE8A3ApCzyEfmYbD9b7CLWdIHe9b41nUV612-7OtC-o8voGxvXOzpvOjSemq6mb02N_5tZiE1rYu_DYMQvOu3bzRp_6L2J5pKcObMOeHWcY_L6MFtNn5L5y-PzdDJPLM9FTFwmq0pbDdYwUZsCnbWFFgoLnjsJaLLKAWcZZ0KaSteV4cIJhtoBosorMSZwuGt9H4JHV2788JTflQzKPZ9y4FPu-ZRHPkPl5lBpEPEvrhnkKmPiFwXjYyw</recordid><startdate>20180115</startdate><enddate>20180115</enddate><creator>Yili Xia</creator><creator>Mandic, Danilo P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4402-8131</orcidid><orcidid>https://orcid.org/0000-0001-8432-3963</orcidid></search><sort><creationdate>20180115</creationdate><title>Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data</title><author>Yili Xia ; Mandic, Danilo P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-f54bb8c80ca13da9efcc9837e926f40ea5bf02152134ab8dba23f31e8f0ee76b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>augmented complex statistics</topic><topic>complementary mean square error (CMSE)</topic><topic>Covariance matrices</topic><topic>Estimation error</topic><topic>improperness (second order noncircularity)</topic><topic>Mean square error methods</topic><topic>Random variables</topic><topic>real-imaginary analysis</topic><topic>Signal processing</topic><topic>Widely linear model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yili Xia</creatorcontrib><creatorcontrib>Mandic, Danilo P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yili Xia</au><au>Mandic, Danilo P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2018-01-15</date><risdate>2018</risdate><volume>66</volume><issue>2</issue><spage>507</spage><epage>514</epage><pages>507-514</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Novel physical insights are provided into the performances of strictly linear (SL) and widely linear (WL) estimators of the generality of complex-valued data, both proper (second order circular) and improper (second-order noncircular). This is achieved by first performing a novel complementary mean square error (CMSE) analysis, in order to quantify the degrees of improperness (second order noncircularity) of the SL and WL estimation errors. The exact bounds on the CMSE difference between the SL and WL estimators are investigated to show that only a joint consideration of the standard MSE analysis and the proposed CMSE analysis has enough degrees of freedom for a rigorous account of the performance of WL and SL estimators. This also makes it possible to rigourously quantify the contributions to the WL performance advantage from the individual real and imaginary channels, an important finding not possible to obtain by using the standard MSE analysis only.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2017.2773428</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4402-8131</orcidid><orcidid>https://orcid.org/0000-0001-8432-3963</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2018-01, Vol.66 (2), p.507-514 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2017_2773428 |
source | IEEE Electronic Library Online |
subjects | augmented complex statistics complementary mean square error (CMSE) Covariance matrices Estimation error improperness (second order noncircularity) Mean square error methods Random variables real-imaginary analysis Signal processing Widely linear model |
title | Augmented Performance Bounds on Strictly Linear and Widely Linear Estimators With Complex Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20Performance%20Bounds%20on%20Strictly%20Linear%20and%20Widely%20Linear%20Estimators%20With%20Complex%20Data&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yili%20Xia&rft.date=2018-01-15&rft.volume=66&rft.issue=2&rft.spage=507&rft.epage=514&rft.pages=507-514&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2773428&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2017_2773428%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8106751&rfr_iscdi=true |