Boosted KZ and LLL Algorithms

There exist two issues among popular lattice reduction algorithms that should cause our concern. The first one is Korkine-Zolotarev (KZ) and Lenstra-Lenstra-Lovász (LLL) algorithms may increase the lengths of basis vectors. The other is KZ reduction suffers worse performance than Minkowski reductio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2017-09, Vol.65 (18), p.4784-4796
Hauptverfasser: Lyu, Shanxiang, Ling, Cong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4796
container_issue 18
container_start_page 4784
container_title IEEE transactions on signal processing
container_volume 65
creator Lyu, Shanxiang
Ling, Cong
description There exist two issues among popular lattice reduction algorithms that should cause our concern. The first one is Korkine-Zolotarev (KZ) and Lenstra-Lenstra-Lovász (LLL) algorithms may increase the lengths of basis vectors. The other is KZ reduction suffers worse performance than Minkowski reduction in terms of providing short basis vectors, despite its superior theoretical upper bounds. To address these limitations, we improve the size reduction steps in KZ and LLL to set up two new efficient algorithms, referred to as boosted KZ and LLL, for solving the shortest basis problem with exponential and polynomial complexity, respectively. Both of them offer better actual performance than their classic counterparts, and the performance bounds for KZ are also improved. We apply them to designing integer-forcing (IF) linear receivers for multi-input multioutput communications. Our simulations confirm their rate and complexity advantages.
doi_str_mv 10.1109/TSP.2017.2708020
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2017_2708020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7933198</ieee_id><sourcerecordid>1919015080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-46cb832a256755020b28670c8ffba74f5436dcf93182b354e6ccd990caaf37c03</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3QYQFz1tn8rFJjrXUD1xQsIJ4Cdlsoi1ttybbg__elBZPM4fnnZd5CLlEGCGCvp29vY4ooBxRCQooHJEBao4lcFkd5x0EK4WSH6fkLKUFAHKuqwG5vuu61Pu2eP4s7Lot6rouxsuvLs7771U6JyfBLpO_OMwheb-fziaPZf3y8DQZ16WjGvuSV65RjFoqKilELm-oqiQ4FUJjJQ-Cs6p1QTNUtGGC-8q5Vmtw1gYmHbAhudnf3cTuZ-tTbxbdNq5zpUGNGlDknzIFe8rFLqXog9nE-crGX4NgdhJMlmB2EsxBQo5c7SNz7_0_LjVjqBX7A2sTVPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919015080</pqid></control><display><type>article</type><title>Boosted KZ and LLL Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Lyu, Shanxiang ; Ling, Cong</creator><creatorcontrib>Lyu, Shanxiang ; Ling, Cong</creatorcontrib><description>There exist two issues among popular lattice reduction algorithms that should cause our concern. The first one is Korkine-Zolotarev (KZ) and Lenstra-Lenstra-Lovász (LLL) algorithms may increase the lengths of basis vectors. The other is KZ reduction suffers worse performance than Minkowski reduction in terms of providing short basis vectors, despite its superior theoretical upper bounds. To address these limitations, we improve the size reduction steps in KZ and LLL to set up two new efficient algorithms, referred to as boosted KZ and LLL, for solving the shortest basis problem with exponential and polynomial complexity, respectively. Both of them offer better actual performance than their classic counterparts, and the performance bounds for KZ are also improved. We apply them to designing integer-forcing (IF) linear receivers for multi-input multioutput communications. Our simulations confirm their rate and complexity advantages.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2708020</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Codes ; Complexity ; Complexity theory ; Computer simulation ; integer-forcing ; Lattice reduction ; Lattices ; Linear receivers ; LLL ; Matrix decomposition ; MIMO ; Receivers ; shortest basis problem ; Signal processing algorithms ; Size reduction ; Upper bounds</subject><ispartof>IEEE transactions on signal processing, 2017-09, Vol.65 (18), p.4784-4796</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-46cb832a256755020b28670c8ffba74f5436dcf93182b354e6ccd990caaf37c03</citedby><cites>FETCH-LOGICAL-c291t-46cb832a256755020b28670c8ffba74f5436dcf93182b354e6ccd990caaf37c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7933198$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7933198$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lyu, Shanxiang</creatorcontrib><creatorcontrib>Ling, Cong</creatorcontrib><title>Boosted KZ and LLL Algorithms</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>There exist two issues among popular lattice reduction algorithms that should cause our concern. The first one is Korkine-Zolotarev (KZ) and Lenstra-Lenstra-Lovász (LLL) algorithms may increase the lengths of basis vectors. The other is KZ reduction suffers worse performance than Minkowski reduction in terms of providing short basis vectors, despite its superior theoretical upper bounds. To address these limitations, we improve the size reduction steps in KZ and LLL to set up two new efficient algorithms, referred to as boosted KZ and LLL, for solving the shortest basis problem with exponential and polynomial complexity, respectively. Both of them offer better actual performance than their classic counterparts, and the performance bounds for KZ are also improved. We apply them to designing integer-forcing (IF) linear receivers for multi-input multioutput communications. Our simulations confirm their rate and complexity advantages.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computer simulation</subject><subject>integer-forcing</subject><subject>Lattice reduction</subject><subject>Lattices</subject><subject>Linear receivers</subject><subject>LLL</subject><subject>Matrix decomposition</subject><subject>MIMO</subject><subject>Receivers</subject><subject>shortest basis problem</subject><subject>Signal processing algorithms</subject><subject>Size reduction</subject><subject>Upper bounds</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3QYQFz1tn8rFJjrXUD1xQsIJ4Cdlsoi1ttybbg__elBZPM4fnnZd5CLlEGCGCvp29vY4ooBxRCQooHJEBao4lcFkd5x0EK4WSH6fkLKUFAHKuqwG5vuu61Pu2eP4s7Lot6rouxsuvLs7771U6JyfBLpO_OMwheb-fziaPZf3y8DQZ16WjGvuSV65RjFoqKilELm-oqiQ4FUJjJQ-Cs6p1QTNUtGGC-8q5Vmtw1gYmHbAhudnf3cTuZ-tTbxbdNq5zpUGNGlDknzIFe8rFLqXog9nE-crGX4NgdhJMlmB2EsxBQo5c7SNz7_0_LjVjqBX7A2sTVPM</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Lyu, Shanxiang</creator><creator>Ling, Cong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170915</creationdate><title>Boosted KZ and LLL Algorithms</title><author>Lyu, Shanxiang ; Ling, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-46cb832a256755020b28670c8ffba74f5436dcf93182b354e6ccd990caaf37c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computer simulation</topic><topic>integer-forcing</topic><topic>Lattice reduction</topic><topic>Lattices</topic><topic>Linear receivers</topic><topic>LLL</topic><topic>Matrix decomposition</topic><topic>MIMO</topic><topic>Receivers</topic><topic>shortest basis problem</topic><topic>Signal processing algorithms</topic><topic>Size reduction</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Shanxiang</creatorcontrib><creatorcontrib>Ling, Cong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lyu, Shanxiang</au><au>Ling, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosted KZ and LLL Algorithms</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-09-15</date><risdate>2017</risdate><volume>65</volume><issue>18</issue><spage>4784</spage><epage>4796</epage><pages>4784-4796</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>There exist two issues among popular lattice reduction algorithms that should cause our concern. The first one is Korkine-Zolotarev (KZ) and Lenstra-Lenstra-Lovász (LLL) algorithms may increase the lengths of basis vectors. The other is KZ reduction suffers worse performance than Minkowski reduction in terms of providing short basis vectors, despite its superior theoretical upper bounds. To address these limitations, we improve the size reduction steps in KZ and LLL to set up two new efficient algorithms, referred to as boosted KZ and LLL, for solving the shortest basis problem with exponential and polynomial complexity, respectively. Both of them offer better actual performance than their classic counterparts, and the performance bounds for KZ are also improved. We apply them to designing integer-forcing (IF) linear receivers for multi-input multioutput communications. Our simulations confirm their rate and complexity advantages.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2017.2708020</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2017-09, Vol.65 (18), p.4784-4796
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2017_2708020
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Codes
Complexity
Complexity theory
Computer simulation
integer-forcing
Lattice reduction
Lattices
Linear receivers
LLL
Matrix decomposition
MIMO
Receivers
shortest basis problem
Signal processing algorithms
Size reduction
Upper bounds
title Boosted KZ and LLL Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosted%20KZ%20and%20LLL%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Lyu,%20Shanxiang&rft.date=2017-09-15&rft.volume=65&rft.issue=18&rft.spage=4784&rft.epage=4796&rft.pages=4784-4796&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2708020&rft_dat=%3Cproquest_RIE%3E1919015080%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1919015080&rft_id=info:pmid/&rft_ieee_id=7933198&rfr_iscdi=true