Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation

In this study, a multiple-comparison approach is developed for detecting faint hyperspectral sources. The detection method relies on a sparse and nonnegative representation on a highly coherent dictionary to track a spatially varying source. A robust control of the detection errors is ensured by lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2017-07, Vol.65 (13), p.3538-3550
Hauptverfasser: Bacher, Raphael, Meillier, Celine, Chatelain, Florent, Michel, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3550
container_issue 13
container_start_page 3538
container_title IEEE transactions on signal processing
container_volume 65
creator Bacher, Raphael
Meillier, Celine
Chatelain, Florent
Michel, Olivier
description In this study, a multiple-comparison approach is developed for detecting faint hyperspectral sources. The detection method relies on a sparse and nonnegative representation on a highly coherent dictionary to track a spatially varying source. A robust control of the detection errors is ensured by learning the test statistic distributions on the data. The resulting control is based on the false discovery rate, to take into account the large number of pixels to be tested. This method is applied to data recently recorded by the three-dimensional spectrograph MultiUnit Spectrograph Explorer (MUSE).
doi_str_mv 10.1109/TSP.2017.2688965
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2017_2688965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7889032</ieee_id><sourcerecordid>1897030984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e4156f7582c2b4bdb67a1b1424963a641fce7937176d4d85dafe051275cd92dd3</originalsourceid><addsrcrecordid>eNo9kMtLAzEQxhdRsFbvgpeA5615Z3OU-qggKm213pbsZrZurZs1SYX-96ZUPM0w8_vm8WXZOcEjQrC-ms9eRhQTNaKyKLQUB9mAaE5yzJU8TDkWLBeFej_OTkJYYUw413KQ2amrNiGiseuid2vkGvRm_LbtlmgB5hNNtj340EMdvVmjufFLiOgGYiq0rkOLNn6gWW98APTkug6WJrY_gKbQewjQRbPDTrOjxqwDnP3FYfZ6dzsfT_LH5_uH8fVjXjPGYg6cCNkoUdCaVryylVSGVITTdCkzkpOmBqWZIkpabgthTQNYEKpEbTW1lg2zy_3c3rvvDYRYrtzGd2llSQqtMMO64InCe6r2LgQPTdn79is9XRJc7rwsk5flzsvyz8skudhLWgD4x1VqYkbZLyLAcRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897030984</pqid></control><display><type>article</type><title>Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation</title><source>IEEE Electronic Library (IEL)</source><creator>Bacher, Raphael ; Meillier, Celine ; Chatelain, Florent ; Michel, Olivier</creator><creatorcontrib>Bacher, Raphael ; Meillier, Celine ; Chatelain, Florent ; Michel, Olivier</creatorcontrib><description>In this study, a multiple-comparison approach is developed for detecting faint hyperspectral sources. The detection method relies on a sparse and nonnegative representation on a highly coherent dictionary to track a spatially varying source. A robust control of the detection errors is ensured by learning the test statistic distributions on the data. The resulting control is based on the false discovery rate, to take into account the large number of pixels to be tested. This method is applied to data recently recorded by the three-dimensional spectrograph MultiUnit Spectrograph Explorer (MUSE).</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2688965</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomic measurements ; Context ; Detection ; Detectors ; Dictionaries ; FDR ; global error control ; Hyperspectral imaging ; Representations ; Robust control ; robust estimation ; Signal to noise ratio ; Target detection ; Testing</subject><ispartof>IEEE transactions on signal processing, 2017-07, Vol.65 (13), p.3538-3550</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e4156f7582c2b4bdb67a1b1424963a641fce7937176d4d85dafe051275cd92dd3</citedby><cites>FETCH-LOGICAL-c333t-e4156f7582c2b4bdb67a1b1424963a641fce7937176d4d85dafe051275cd92dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7889032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7889032$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bacher, Raphael</creatorcontrib><creatorcontrib>Meillier, Celine</creatorcontrib><creatorcontrib>Chatelain, Florent</creatorcontrib><creatorcontrib>Michel, Olivier</creatorcontrib><title>Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this study, a multiple-comparison approach is developed for detecting faint hyperspectral sources. The detection method relies on a sparse and nonnegative representation on a highly coherent dictionary to track a spatially varying source. A robust control of the detection errors is ensured by learning the test statistic distributions on the data. The resulting control is based on the false discovery rate, to take into account the large number of pixels to be tested. This method is applied to data recently recorded by the three-dimensional spectrograph MultiUnit Spectrograph Explorer (MUSE).</description><subject>Atomic measurements</subject><subject>Context</subject><subject>Detection</subject><subject>Detectors</subject><subject>Dictionaries</subject><subject>FDR</subject><subject>global error control</subject><subject>Hyperspectral imaging</subject><subject>Representations</subject><subject>Robust control</subject><subject>robust estimation</subject><subject>Signal to noise ratio</subject><subject>Target detection</subject><subject>Testing</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLAzEQxhdRsFbvgpeA5615Z3OU-qggKm213pbsZrZurZs1SYX-96ZUPM0w8_vm8WXZOcEjQrC-ms9eRhQTNaKyKLQUB9mAaE5yzJU8TDkWLBeFej_OTkJYYUw413KQ2amrNiGiseuid2vkGvRm_LbtlmgB5hNNtj340EMdvVmjufFLiOgGYiq0rkOLNn6gWW98APTkug6WJrY_gKbQewjQRbPDTrOjxqwDnP3FYfZ6dzsfT_LH5_uH8fVjXjPGYg6cCNkoUdCaVryylVSGVITTdCkzkpOmBqWZIkpabgthTQNYEKpEbTW1lg2zy_3c3rvvDYRYrtzGd2llSQqtMMO64InCe6r2LgQPTdn79is9XRJc7rwsk5flzsvyz8skudhLWgD4x1VqYkbZLyLAcRo</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Bacher, Raphael</creator><creator>Meillier, Celine</creator><creator>Chatelain, Florent</creator><creator>Michel, Olivier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170701</creationdate><title>Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation</title><author>Bacher, Raphael ; Meillier, Celine ; Chatelain, Florent ; Michel, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e4156f7582c2b4bdb67a1b1424963a641fce7937176d4d85dafe051275cd92dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic measurements</topic><topic>Context</topic><topic>Detection</topic><topic>Detectors</topic><topic>Dictionaries</topic><topic>FDR</topic><topic>global error control</topic><topic>Hyperspectral imaging</topic><topic>Representations</topic><topic>Robust control</topic><topic>robust estimation</topic><topic>Signal to noise ratio</topic><topic>Target detection</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacher, Raphael</creatorcontrib><creatorcontrib>Meillier, Celine</creatorcontrib><creatorcontrib>Chatelain, Florent</creatorcontrib><creatorcontrib>Michel, Olivier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bacher, Raphael</au><au>Meillier, Celine</au><au>Chatelain, Florent</au><au>Michel, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>65</volume><issue>13</issue><spage>3538</spage><epage>3550</epage><pages>3538-3550</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this study, a multiple-comparison approach is developed for detecting faint hyperspectral sources. The detection method relies on a sparse and nonnegative representation on a highly coherent dictionary to track a spatially varying source. A robust control of the detection errors is ensured by learning the test statistic distributions on the data. The resulting control is based on the false discovery rate, to take into account the large number of pixels to be tested. This method is applied to data recently recorded by the three-dimensional spectrograph MultiUnit Spectrograph Explorer (MUSE).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2017.2688965</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2017-07, Vol.65 (13), p.3538-3550
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2017_2688965
source IEEE Electronic Library (IEL)
subjects Atomic measurements
Context
Detection
Detectors
Dictionaries
FDR
global error control
Hyperspectral imaging
Representations
Robust control
robust estimation
Signal to noise ratio
Target detection
Testing
title Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Control%20of%20Varying%20Weak%20Hyperspectral%20Target%20Detection%20With%20Sparse%20Nonnegative%20Representation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Bacher,%20Raphael&rft.date=2017-07-01&rft.volume=65&rft.issue=13&rft.spage=3538&rft.epage=3550&rft.pages=3538-3550&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2688965&rft_dat=%3Cproquest_RIE%3E1897030984%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897030984&rft_id=info:pmid/&rft_ieee_id=7889032&rfr_iscdi=true