Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation
In this study, a multiple-comparison approach is developed for detecting faint hyperspectral sources. The detection method relies on a sparse and nonnegative representation on a highly coherent dictionary to track a spatially varying source. A robust control of the detection errors is ensured by lea...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2017-07, Vol.65 (13), p.3538-3550 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3550 |
---|---|
container_issue | 13 |
container_start_page | 3538 |
container_title | IEEE transactions on signal processing |
container_volume | 65 |
creator | Bacher, Raphael Meillier, Celine Chatelain, Florent Michel, Olivier |
description | In this study, a multiple-comparison approach is developed for detecting faint hyperspectral sources. The detection method relies on a sparse and nonnegative representation on a highly coherent dictionary to track a spatially varying source. A robust control of the detection errors is ensured by learning the test statistic distributions on the data. The resulting control is based on the false discovery rate, to take into account the large number of pixels to be tested. This method is applied to data recently recorded by the three-dimensional spectrograph MultiUnit Spectrograph Explorer (MUSE). |
doi_str_mv | 10.1109/TSP.2017.2688965 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2017_2688965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7889032</ieee_id><sourcerecordid>1897030984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e4156f7582c2b4bdb67a1b1424963a641fce7937176d4d85dafe051275cd92dd3</originalsourceid><addsrcrecordid>eNo9kMtLAzEQxhdRsFbvgpeA5615Z3OU-qggKm213pbsZrZurZs1SYX-96ZUPM0w8_vm8WXZOcEjQrC-ms9eRhQTNaKyKLQUB9mAaE5yzJU8TDkWLBeFej_OTkJYYUw413KQ2amrNiGiseuid2vkGvRm_LbtlmgB5hNNtj340EMdvVmjufFLiOgGYiq0rkOLNn6gWW98APTkug6WJrY_gKbQewjQRbPDTrOjxqwDnP3FYfZ6dzsfT_LH5_uH8fVjXjPGYg6cCNkoUdCaVryylVSGVITTdCkzkpOmBqWZIkpabgthTQNYEKpEbTW1lg2zy_3c3rvvDYRYrtzGd2llSQqtMMO64InCe6r2LgQPTdn79is9XRJc7rwsk5flzsvyz8skudhLWgD4x1VqYkbZLyLAcRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897030984</pqid></control><display><type>article</type><title>Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation</title><source>IEEE Electronic Library (IEL)</source><creator>Bacher, Raphael ; Meillier, Celine ; Chatelain, Florent ; Michel, Olivier</creator><creatorcontrib>Bacher, Raphael ; Meillier, Celine ; Chatelain, Florent ; Michel, Olivier</creatorcontrib><description>In this study, a multiple-comparison approach is developed for detecting faint hyperspectral sources. The detection method relies on a sparse and nonnegative representation on a highly coherent dictionary to track a spatially varying source. A robust control of the detection errors is ensured by learning the test statistic distributions on the data. The resulting control is based on the false discovery rate, to take into account the large number of pixels to be tested. This method is applied to data recently recorded by the three-dimensional spectrograph MultiUnit Spectrograph Explorer (MUSE).</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2017.2688965</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atomic measurements ; Context ; Detection ; Detectors ; Dictionaries ; FDR ; global error control ; Hyperspectral imaging ; Representations ; Robust control ; robust estimation ; Signal to noise ratio ; Target detection ; Testing</subject><ispartof>IEEE transactions on signal processing, 2017-07, Vol.65 (13), p.3538-3550</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e4156f7582c2b4bdb67a1b1424963a641fce7937176d4d85dafe051275cd92dd3</citedby><cites>FETCH-LOGICAL-c333t-e4156f7582c2b4bdb67a1b1424963a641fce7937176d4d85dafe051275cd92dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7889032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7889032$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bacher, Raphael</creatorcontrib><creatorcontrib>Meillier, Celine</creatorcontrib><creatorcontrib>Chatelain, Florent</creatorcontrib><creatorcontrib>Michel, Olivier</creatorcontrib><title>Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In this study, a multiple-comparison approach is developed for detecting faint hyperspectral sources. The detection method relies on a sparse and nonnegative representation on a highly coherent dictionary to track a spatially varying source. A robust control of the detection errors is ensured by learning the test statistic distributions on the data. The resulting control is based on the false discovery rate, to take into account the large number of pixels to be tested. This method is applied to data recently recorded by the three-dimensional spectrograph MultiUnit Spectrograph Explorer (MUSE).</description><subject>Atomic measurements</subject><subject>Context</subject><subject>Detection</subject><subject>Detectors</subject><subject>Dictionaries</subject><subject>FDR</subject><subject>global error control</subject><subject>Hyperspectral imaging</subject><subject>Representations</subject><subject>Robust control</subject><subject>robust estimation</subject><subject>Signal to noise ratio</subject><subject>Target detection</subject><subject>Testing</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLAzEQxhdRsFbvgpeA5615Z3OU-qggKm213pbsZrZurZs1SYX-96ZUPM0w8_vm8WXZOcEjQrC-ms9eRhQTNaKyKLQUB9mAaE5yzJU8TDkWLBeFej_OTkJYYUw413KQ2amrNiGiseuid2vkGvRm_LbtlmgB5hNNtj340EMdvVmjufFLiOgGYiq0rkOLNn6gWW98APTkug6WJrY_gKbQewjQRbPDTrOjxqwDnP3FYfZ6dzsfT_LH5_uH8fVjXjPGYg6cCNkoUdCaVryylVSGVITTdCkzkpOmBqWZIkpabgthTQNYEKpEbTW1lg2zy_3c3rvvDYRYrtzGd2llSQqtMMO64InCe6r2LgQPTdn79is9XRJc7rwsk5flzsvyz8skudhLWgD4x1VqYkbZLyLAcRo</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Bacher, Raphael</creator><creator>Meillier, Celine</creator><creator>Chatelain, Florent</creator><creator>Michel, Olivier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170701</creationdate><title>Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation</title><author>Bacher, Raphael ; Meillier, Celine ; Chatelain, Florent ; Michel, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e4156f7582c2b4bdb67a1b1424963a641fce7937176d4d85dafe051275cd92dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic measurements</topic><topic>Context</topic><topic>Detection</topic><topic>Detectors</topic><topic>Dictionaries</topic><topic>FDR</topic><topic>global error control</topic><topic>Hyperspectral imaging</topic><topic>Representations</topic><topic>Robust control</topic><topic>robust estimation</topic><topic>Signal to noise ratio</topic><topic>Target detection</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bacher, Raphael</creatorcontrib><creatorcontrib>Meillier, Celine</creatorcontrib><creatorcontrib>Chatelain, Florent</creatorcontrib><creatorcontrib>Michel, Olivier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bacher, Raphael</au><au>Meillier, Celine</au><au>Chatelain, Florent</au><au>Michel, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>65</volume><issue>13</issue><spage>3538</spage><epage>3550</epage><pages>3538-3550</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In this study, a multiple-comparison approach is developed for detecting faint hyperspectral sources. The detection method relies on a sparse and nonnegative representation on a highly coherent dictionary to track a spatially varying source. A robust control of the detection errors is ensured by learning the test statistic distributions on the data. The resulting control is based on the false discovery rate, to take into account the large number of pixels to be tested. This method is applied to data recently recorded by the three-dimensional spectrograph MultiUnit Spectrograph Explorer (MUSE).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2017.2688965</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2017-07, Vol.65 (13), p.3538-3550 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2017_2688965 |
source | IEEE Electronic Library (IEL) |
subjects | Atomic measurements Context Detection Detectors Dictionaries FDR global error control Hyperspectral imaging Representations Robust control robust estimation Signal to noise ratio Target detection Testing |
title | Robust Control of Varying Weak Hyperspectral Target Detection With Sparse Nonnegative Representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Control%20of%20Varying%20Weak%20Hyperspectral%20Target%20Detection%20With%20Sparse%20Nonnegative%20Representation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Bacher,%20Raphael&rft.date=2017-07-01&rft.volume=65&rft.issue=13&rft.spage=3538&rft.epage=3550&rft.pages=3538-3550&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2017.2688965&rft_dat=%3Cproquest_RIE%3E1897030984%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897030984&rft_id=info:pmid/&rft_ieee_id=7889032&rfr_iscdi=true |