Kernel-Based Reconstruction of Graph Signals

A number of applications in engineering, social sciences, physics, and biology involve inference over networks. In this context, graph signals are widely encountered as descriptors of vertex attributes or features in graph-structured data. Estimating such signals in all vertices given noisy observat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2017-02, Vol.65 (3), p.764-778
Hauptverfasser: Romero, Daniel, Meng Ma, Giannakis, Georgios B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 778
container_issue 3
container_start_page 764
container_title IEEE transactions on signal processing
container_volume 65
creator Romero, Daniel
Meng Ma
Giannakis, Georgios B.
description A number of applications in engineering, social sciences, physics, and biology involve inference over networks. In this context, graph signals are widely encountered as descriptors of vertex attributes or features in graph-structured data. Estimating such signals in all vertices given noisy observations of their values on a subset of vertices has been extensively analyzed in the literature of signal processing on graphs (SPoG). This paper advocates kernel regression as a framework generalizing popular SPoG modeling and reconstruction and expanding their capabilities. Formulating signal reconstruction as a regression task on reproducing kernel Hilbert spaces of graph signals permeates benefits from statistical learning, offers fresh insights, and allows for estimators that leverage richer forms of prior information than existing alternatives. A number of SPoG notions such as bandlimitedness, graph filters, and the graph Fourier transform are naturally accommodated in the kernel framework. Additionally, this paper capitalizes on the so-called representer theorem to devise simpler versions of existing Tikhonov regularized estimators, and offers a novel probabilistic interpretation of kernel methods on graphs based on graphical models. Motivated by the challenges of selecting the bandwidth parameter in SPoG estimators or the kernel map in kernel-based methods, this paper further proposes two multikernel approaches with complementary strengths. Whereas the first enables estimation of the unknown bandwidth of bandlimited signals, the second allows for efficient graph filter selection. Numerical tests with synthetic as well as real data demonstrate the merits of the proposed methods relative to state-of-the-art alternatives.
doi_str_mv 10.1109/TSP.2016.2620116
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2016_2620116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7605501</ieee_id><sourcerecordid>1844435135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-5e23264c306e38262d87e1f4b3aec9ac2b46e12d0900c74dcc54cb81d9dba4963</originalsourceid><addsrcrecordid>eNo9kM9Lw0AQhRdRsFbvgpeAV1Nnsj-SHLXUKhYUW8HbstlMNKUmcTc9-N-7IcXTm8N7w8fH2CXCDBHy2836dZYAqlmiQqA6YhPMBcYgUnUcbpA8lln6ccrOvN8CoBC5mrCbZ3IN7eJ746mM3si2je_d3vZ120RtFS2d6b6idf3ZmJ0_ZydVCLo45JS9Pyw288d49bJ8mt-tYss572NJCU-UsBwU8SzwlFlKWImCG7K5sUkhFGFSQg5gU1FaK4UtMizzsjCBik_Z9fi3c-3Pnnyvt-3eDQQaMyEEl8hlaMHYsq713lGlO1d_G_erEfTgRAcnenCiD07C5Gqc1ET0X08VSAnI_wCtlVuE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844435135</pqid></control><display><type>article</type><title>Kernel-Based Reconstruction of Graph Signals</title><source>IEEE Electronic Library (IEL)</source><creator>Romero, Daniel ; Meng Ma ; Giannakis, Georgios B.</creator><creatorcontrib>Romero, Daniel ; Meng Ma ; Giannakis, Georgios B.</creatorcontrib><description>A number of applications in engineering, social sciences, physics, and biology involve inference over networks. In this context, graph signals are widely encountered as descriptors of vertex attributes or features in graph-structured data. Estimating such signals in all vertices given noisy observations of their values on a subset of vertices has been extensively analyzed in the literature of signal processing on graphs (SPoG). This paper advocates kernel regression as a framework generalizing popular SPoG modeling and reconstruction and expanding their capabilities. Formulating signal reconstruction as a regression task on reproducing kernel Hilbert spaces of graph signals permeates benefits from statistical learning, offers fresh insights, and allows for estimators that leverage richer forms of prior information than existing alternatives. A number of SPoG notions such as bandlimitedness, graph filters, and the graph Fourier transform are naturally accommodated in the kernel framework. Additionally, this paper capitalizes on the so-called representer theorem to devise simpler versions of existing Tikhonov regularized estimators, and offers a novel probabilistic interpretation of kernel methods on graphs based on graphical models. Motivated by the challenges of selecting the bandwidth parameter in SPoG estimators or the kernel map in kernel-based methods, this paper further proposes two multikernel approaches with complementary strengths. Whereas the first enables estimation of the unknown bandwidth of bandlimited signals, the second allows for efficient graph filter selection. Numerical tests with synthetic as well as real data demonstrate the merits of the proposed methods relative to state-of-the-art alternatives.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2620116</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Apexes ; Bandwidth ; Bandwidths ; Estimation ; Estimators ; Fourier transforms ; Graph signal reconstruction ; Graph theory ; Graphs ; Hilbert space ; Kernel ; kernel regression ; Kernels ; Laplace equations ; multi-kernel learning ; Signal processing ; Signal reconstruction ; Social network services ; Statistical analysis ; Structured data</subject><ispartof>IEEE transactions on signal processing, 2017-02, Vol.65 (3), p.764-778</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-5e23264c306e38262d87e1f4b3aec9ac2b46e12d0900c74dcc54cb81d9dba4963</citedby><cites>FETCH-LOGICAL-c333t-5e23264c306e38262d87e1f4b3aec9ac2b46e12d0900c74dcc54cb81d9dba4963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7605501$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7605501$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Romero, Daniel</creatorcontrib><creatorcontrib>Meng Ma</creatorcontrib><creatorcontrib>Giannakis, Georgios B.</creatorcontrib><title>Kernel-Based Reconstruction of Graph Signals</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A number of applications in engineering, social sciences, physics, and biology involve inference over networks. In this context, graph signals are widely encountered as descriptors of vertex attributes or features in graph-structured data. Estimating such signals in all vertices given noisy observations of their values on a subset of vertices has been extensively analyzed in the literature of signal processing on graphs (SPoG). This paper advocates kernel regression as a framework generalizing popular SPoG modeling and reconstruction and expanding their capabilities. Formulating signal reconstruction as a regression task on reproducing kernel Hilbert spaces of graph signals permeates benefits from statistical learning, offers fresh insights, and allows for estimators that leverage richer forms of prior information than existing alternatives. A number of SPoG notions such as bandlimitedness, graph filters, and the graph Fourier transform are naturally accommodated in the kernel framework. Additionally, this paper capitalizes on the so-called representer theorem to devise simpler versions of existing Tikhonov regularized estimators, and offers a novel probabilistic interpretation of kernel methods on graphs based on graphical models. Motivated by the challenges of selecting the bandwidth parameter in SPoG estimators or the kernel map in kernel-based methods, this paper further proposes two multikernel approaches with complementary strengths. Whereas the first enables estimation of the unknown bandwidth of bandlimited signals, the second allows for efficient graph filter selection. Numerical tests with synthetic as well as real data demonstrate the merits of the proposed methods relative to state-of-the-art alternatives.</description><subject>Apexes</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Fourier transforms</subject><subject>Graph signal reconstruction</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Hilbert space</subject><subject>Kernel</subject><subject>kernel regression</subject><subject>Kernels</subject><subject>Laplace equations</subject><subject>multi-kernel learning</subject><subject>Signal processing</subject><subject>Signal reconstruction</subject><subject>Social network services</subject><subject>Statistical analysis</subject><subject>Structured data</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9Lw0AQhRdRsFbvgpeAV1Nnsj-SHLXUKhYUW8HbstlMNKUmcTc9-N-7IcXTm8N7w8fH2CXCDBHy2836dZYAqlmiQqA6YhPMBcYgUnUcbpA8lln6ccrOvN8CoBC5mrCbZ3IN7eJ746mM3si2je_d3vZ120RtFS2d6b6idf3ZmJ0_ZydVCLo45JS9Pyw288d49bJ8mt-tYss572NJCU-UsBwU8SzwlFlKWImCG7K5sUkhFGFSQg5gU1FaK4UtMizzsjCBik_Z9fi3c-3Pnnyvt-3eDQQaMyEEl8hlaMHYsq713lGlO1d_G_erEfTgRAcnenCiD07C5Gqc1ET0X08VSAnI_wCtlVuE</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Romero, Daniel</creator><creator>Meng Ma</creator><creator>Giannakis, Georgios B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170201</creationdate><title>Kernel-Based Reconstruction of Graph Signals</title><author>Romero, Daniel ; Meng Ma ; Giannakis, Georgios B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-5e23264c306e38262d87e1f4b3aec9ac2b46e12d0900c74dcc54cb81d9dba4963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apexes</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Fourier transforms</topic><topic>Graph signal reconstruction</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Hilbert space</topic><topic>Kernel</topic><topic>kernel regression</topic><topic>Kernels</topic><topic>Laplace equations</topic><topic>multi-kernel learning</topic><topic>Signal processing</topic><topic>Signal reconstruction</topic><topic>Social network services</topic><topic>Statistical analysis</topic><topic>Structured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romero, Daniel</creatorcontrib><creatorcontrib>Meng Ma</creatorcontrib><creatorcontrib>Giannakis, Georgios B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Romero, Daniel</au><au>Meng Ma</au><au>Giannakis, Georgios B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kernel-Based Reconstruction of Graph Signals</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>65</volume><issue>3</issue><spage>764</spage><epage>778</epage><pages>764-778</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A number of applications in engineering, social sciences, physics, and biology involve inference over networks. In this context, graph signals are widely encountered as descriptors of vertex attributes or features in graph-structured data. Estimating such signals in all vertices given noisy observations of their values on a subset of vertices has been extensively analyzed in the literature of signal processing on graphs (SPoG). This paper advocates kernel regression as a framework generalizing popular SPoG modeling and reconstruction and expanding their capabilities. Formulating signal reconstruction as a regression task on reproducing kernel Hilbert spaces of graph signals permeates benefits from statistical learning, offers fresh insights, and allows for estimators that leverage richer forms of prior information than existing alternatives. A number of SPoG notions such as bandlimitedness, graph filters, and the graph Fourier transform are naturally accommodated in the kernel framework. Additionally, this paper capitalizes on the so-called representer theorem to devise simpler versions of existing Tikhonov regularized estimators, and offers a novel probabilistic interpretation of kernel methods on graphs based on graphical models. Motivated by the challenges of selecting the bandwidth parameter in SPoG estimators or the kernel map in kernel-based methods, this paper further proposes two multikernel approaches with complementary strengths. Whereas the first enables estimation of the unknown bandwidth of bandlimited signals, the second allows for efficient graph filter selection. Numerical tests with synthetic as well as real data demonstrate the merits of the proposed methods relative to state-of-the-art alternatives.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2016.2620116</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2017-02, Vol.65 (3), p.764-778
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2016_2620116
source IEEE Electronic Library (IEL)
subjects Apexes
Bandwidth
Bandwidths
Estimation
Estimators
Fourier transforms
Graph signal reconstruction
Graph theory
Graphs
Hilbert space
Kernel
kernel regression
Kernels
Laplace equations
multi-kernel learning
Signal processing
Signal reconstruction
Social network services
Statistical analysis
Structured data
title Kernel-Based Reconstruction of Graph Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kernel-Based%20Reconstruction%20of%20Graph%20Signals&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Romero,%20Daniel&rft.date=2017-02-01&rft.volume=65&rft.issue=3&rft.spage=764&rft.epage=778&rft.pages=764-778&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2620116&rft_dat=%3Cproquest_RIE%3E1844435135%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844435135&rft_id=info:pmid/&rft_ieee_id=7605501&rfr_iscdi=true