Grid Based Nonlinear Filtering Revisited: Recursive Estimation & Asymptotic Optimality
This paper revisits grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization, namely, the Markovian type and the marginal type. A set of novel...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2016-08, Vol.64 (16), p.4244-4259 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4259 |
---|---|
container_issue | 16 |
container_start_page | 4244 |
container_title | IEEE transactions on signal processing |
container_volume | 64 |
creator | Kalogerias, Dionysios S. Petropulu, Athina P. |
description | This paper revisits grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization, namely, the Markovian type and the marginal type. A set of novel, relaxed sufficient conditions is proposed, ensuring strong and fully characterized pathwise convergence of these filters to the respective MMSE state estimator. In particular, for marginal state quantizations, the notion of conditional regularity of stochastic kernels is introduced which, to the best of the authors' knowledge, constitutes the most relaxed condition under which asymptotic optimality of the respective grid based filters is guaranteed. Further, the convergence results are extended to include filtering of bounded and continuous functionals of the state, as well as recursive approximate state prediction. For both Markovian and marginal quantizations, the whole development of the respective grid-based filters relies more on linear-algebraic techniques and less on measure theoretic arguments, making the presentation considerably shorter and technically simpler. |
doi_str_mv | 10.1109/TSP.2016.2557311 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2016_2557311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7457725</ieee_id><sourcerecordid>1835603623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-330699c5f3bf80979b0074fc79c11c44b815b38d1417b848669f8bb53bdb8d753</originalsourceid><addsrcrecordid>eNpdkNFLwzAQh4soOKfvgi8FQXzpzDVJk_imY5vCcKJTfCtNmkpG19YkHey_N2PDB5_ux_HdcfdF0SWgEQASd8v311GKIBullDIMcBQNQBBIEGHZcciI4oRy9nUanTm3QggIEdkg-pxZU8aPhdNl_NI2tWl0YeOpqb22pvmO3_TGOON1eR-i6q0zGx1PnDfrwpu2iW_iB7ddd771RsWLbtevjd-eRydVUTt9cajD6GM6WY6fkvli9jx-mCcKp8QnGKNMCEUrLCuOBBMSIUYqxYQCUIRIDlRiXgIBJjnhWSYqLiXFspS8ZBQPo9v93s62P712Pl8bp3RdF41ue5cDxzRDOEtxQK__oau2t024LlCIAGaAeKDQnlK2dc7qKu9s-Mluc0D5TnQeROc70flBdBi52o8YrfUfzghlLKX4F4LJeFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1804137108</pqid></control><display><type>article</type><title>Grid Based Nonlinear Filtering Revisited: Recursive Estimation & Asymptotic Optimality</title><source>IEEE Electronic Library (IEL)</source><creator>Kalogerias, Dionysios S. ; Petropulu, Athina P.</creator><creatorcontrib>Kalogerias, Dionysios S. ; Petropulu, Athina P.</creatorcontrib><description>This paper revisits grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization, namely, the Markovian type and the marginal type. A set of novel, relaxed sufficient conditions is proposed, ensuring strong and fully characterized pathwise convergence of these filters to the respective MMSE state estimator. In particular, for marginal state quantizations, the notion of conditional regularity of stochastic kernels is introduced which, to the best of the authors' knowledge, constitutes the most relaxed condition under which asymptotic optimality of the respective grid based filters is guaranteed. Further, the convergence results are extended to include filtering of bounded and continuous functionals of the state, as well as recursive approximate state prediction. For both Markovian and marginal quantizations, the whole development of the respective grid-based filters relies more on linear-algebraic techniques and less on measure theoretic arguments, making the presentation considerably shorter and technically simpler.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2557311</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>approximate filtering ; Approximation ; Asymptotic properties ; change of probability measures ; Convergence ; Filtering ; Filtration ; grid based filtering ; Hidden Markov models ; Kernel ; Markov analysis ; Markov chains ; Markov processes ; Nonlinear filtering ; Optimization ; Quantization ; Quantization (signal) ; sequential estimation</subject><ispartof>IEEE transactions on signal processing, 2016-08, Vol.64 (16), p.4244-4259</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-330699c5f3bf80979b0074fc79c11c44b815b38d1417b848669f8bb53bdb8d753</citedby><cites>FETCH-LOGICAL-c324t-330699c5f3bf80979b0074fc79c11c44b815b38d1417b848669f8bb53bdb8d753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7457725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7457725$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kalogerias, Dionysios S.</creatorcontrib><creatorcontrib>Petropulu, Athina P.</creatorcontrib><title>Grid Based Nonlinear Filtering Revisited: Recursive Estimation & Asymptotic Optimality</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper revisits grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization, namely, the Markovian type and the marginal type. A set of novel, relaxed sufficient conditions is proposed, ensuring strong and fully characterized pathwise convergence of these filters to the respective MMSE state estimator. In particular, for marginal state quantizations, the notion of conditional regularity of stochastic kernels is introduced which, to the best of the authors' knowledge, constitutes the most relaxed condition under which asymptotic optimality of the respective grid based filters is guaranteed. Further, the convergence results are extended to include filtering of bounded and continuous functionals of the state, as well as recursive approximate state prediction. For both Markovian and marginal quantizations, the whole development of the respective grid-based filters relies more on linear-algebraic techniques and less on measure theoretic arguments, making the presentation considerably shorter and technically simpler.</description><subject>approximate filtering</subject><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>change of probability measures</subject><subject>Convergence</subject><subject>Filtering</subject><subject>Filtration</subject><subject>grid based filtering</subject><subject>Hidden Markov models</subject><subject>Kernel</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Nonlinear filtering</subject><subject>Optimization</subject><subject>Quantization</subject><subject>Quantization (signal)</subject><subject>sequential estimation</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkNFLwzAQh4soOKfvgi8FQXzpzDVJk_imY5vCcKJTfCtNmkpG19YkHey_N2PDB5_ux_HdcfdF0SWgEQASd8v311GKIBullDIMcBQNQBBIEGHZcciI4oRy9nUanTm3QggIEdkg-pxZU8aPhdNl_NI2tWl0YeOpqb22pvmO3_TGOON1eR-i6q0zGx1PnDfrwpu2iW_iB7ddd771RsWLbtevjd-eRydVUTt9cajD6GM6WY6fkvli9jx-mCcKp8QnGKNMCEUrLCuOBBMSIUYqxYQCUIRIDlRiXgIBJjnhWSYqLiXFspS8ZBQPo9v93s62P712Pl8bp3RdF41ue5cDxzRDOEtxQK__oau2t024LlCIAGaAeKDQnlK2dc7qKu9s-Mluc0D5TnQeROc70flBdBi52o8YrfUfzghlLKX4F4LJeFc</recordid><startdate>20160815</startdate><enddate>20160815</enddate><creator>Kalogerias, Dionysios S.</creator><creator>Petropulu, Athina P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160815</creationdate><title>Grid Based Nonlinear Filtering Revisited: Recursive Estimation & Asymptotic Optimality</title><author>Kalogerias, Dionysios S. ; Petropulu, Athina P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-330699c5f3bf80979b0074fc79c11c44b815b38d1417b848669f8bb53bdb8d753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>approximate filtering</topic><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>change of probability measures</topic><topic>Convergence</topic><topic>Filtering</topic><topic>Filtration</topic><topic>grid based filtering</topic><topic>Hidden Markov models</topic><topic>Kernel</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Nonlinear filtering</topic><topic>Optimization</topic><topic>Quantization</topic><topic>Quantization (signal)</topic><topic>sequential estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalogerias, Dionysios S.</creatorcontrib><creatorcontrib>Petropulu, Athina P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalogerias, Dionysios S.</au><au>Petropulu, Athina P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grid Based Nonlinear Filtering Revisited: Recursive Estimation & Asymptotic Optimality</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2016-08-15</date><risdate>2016</risdate><volume>64</volume><issue>16</issue><spage>4244</spage><epage>4259</epage><pages>4244-4259</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper revisits grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization, namely, the Markovian type and the marginal type. A set of novel, relaxed sufficient conditions is proposed, ensuring strong and fully characterized pathwise convergence of these filters to the respective MMSE state estimator. In particular, for marginal state quantizations, the notion of conditional regularity of stochastic kernels is introduced which, to the best of the authors' knowledge, constitutes the most relaxed condition under which asymptotic optimality of the respective grid based filters is guaranteed. Further, the convergence results are extended to include filtering of bounded and continuous functionals of the state, as well as recursive approximate state prediction. For both Markovian and marginal quantizations, the whole development of the respective grid-based filters relies more on linear-algebraic techniques and less on measure theoretic arguments, making the presentation considerably shorter and technically simpler.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2016.2557311</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2016-08, Vol.64 (16), p.4244-4259 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2016_2557311 |
source | IEEE Electronic Library (IEL) |
subjects | approximate filtering Approximation Asymptotic properties change of probability measures Convergence Filtering Filtration grid based filtering Hidden Markov models Kernel Markov analysis Markov chains Markov processes Nonlinear filtering Optimization Quantization Quantization (signal) sequential estimation |
title | Grid Based Nonlinear Filtering Revisited: Recursive Estimation & Asymptotic Optimality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grid%20Based%20Nonlinear%20Filtering%20Revisited:%20Recursive%20Estimation%20&%20Asymptotic%20Optimality&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kalogerias,%20Dionysios%20S.&rft.date=2016-08-15&rft.volume=64&rft.issue=16&rft.spage=4244&rft.epage=4259&rft.pages=4244-4259&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2557311&rft_dat=%3Cproquest_RIE%3E1835603623%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1804137108&rft_id=info:pmid/&rft_ieee_id=7457725&rfr_iscdi=true |