Grid Based Nonlinear Filtering Revisited: Recursive Estimation & Asymptotic Optimality

This paper revisits grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization, namely, the Markovian type and the marginal type. A set of novel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2016-08, Vol.64 (16), p.4244-4259
Hauptverfasser: Kalogerias, Dionysios S., Petropulu, Athina P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4259
container_issue 16
container_start_page 4244
container_title IEEE transactions on signal processing
container_volume 64
creator Kalogerias, Dionysios S.
Petropulu, Athina P.
description This paper revisits grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization, namely, the Markovian type and the marginal type. A set of novel, relaxed sufficient conditions is proposed, ensuring strong and fully characterized pathwise convergence of these filters to the respective MMSE state estimator. In particular, for marginal state quantizations, the notion of conditional regularity of stochastic kernels is introduced which, to the best of the authors' knowledge, constitutes the most relaxed condition under which asymptotic optimality of the respective grid based filters is guaranteed. Further, the convergence results are extended to include filtering of bounded and continuous functionals of the state, as well as recursive approximate state prediction. For both Markovian and marginal quantizations, the whole development of the respective grid-based filters relies more on linear-algebraic techniques and less on measure theoretic arguments, making the presentation considerably shorter and technically simpler.
doi_str_mv 10.1109/TSP.2016.2557311
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2016_2557311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7457725</ieee_id><sourcerecordid>1835603623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-330699c5f3bf80979b0074fc79c11c44b815b38d1417b848669f8bb53bdb8d753</originalsourceid><addsrcrecordid>eNpdkNFLwzAQh4soOKfvgi8FQXzpzDVJk_imY5vCcKJTfCtNmkpG19YkHey_N2PDB5_ux_HdcfdF0SWgEQASd8v311GKIBullDIMcBQNQBBIEGHZcciI4oRy9nUanTm3QggIEdkg-pxZU8aPhdNl_NI2tWl0YeOpqb22pvmO3_TGOON1eR-i6q0zGx1PnDfrwpu2iW_iB7ddd771RsWLbtevjd-eRydVUTt9cajD6GM6WY6fkvli9jx-mCcKp8QnGKNMCEUrLCuOBBMSIUYqxYQCUIRIDlRiXgIBJjnhWSYqLiXFspS8ZBQPo9v93s62P712Pl8bp3RdF41ue5cDxzRDOEtxQK__oau2t024LlCIAGaAeKDQnlK2dc7qKu9s-Mluc0D5TnQeROc70flBdBi52o8YrfUfzghlLKX4F4LJeFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1804137108</pqid></control><display><type>article</type><title>Grid Based Nonlinear Filtering Revisited: Recursive Estimation &amp; Asymptotic Optimality</title><source>IEEE Electronic Library (IEL)</source><creator>Kalogerias, Dionysios S. ; Petropulu, Athina P.</creator><creatorcontrib>Kalogerias, Dionysios S. ; Petropulu, Athina P.</creatorcontrib><description>This paper revisits grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization, namely, the Markovian type and the marginal type. A set of novel, relaxed sufficient conditions is proposed, ensuring strong and fully characterized pathwise convergence of these filters to the respective MMSE state estimator. In particular, for marginal state quantizations, the notion of conditional regularity of stochastic kernels is introduced which, to the best of the authors' knowledge, constitutes the most relaxed condition under which asymptotic optimality of the respective grid based filters is guaranteed. Further, the convergence results are extended to include filtering of bounded and continuous functionals of the state, as well as recursive approximate state prediction. For both Markovian and marginal quantizations, the whole development of the respective grid-based filters relies more on linear-algebraic techniques and less on measure theoretic arguments, making the presentation considerably shorter and technically simpler.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2557311</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>approximate filtering ; Approximation ; Asymptotic properties ; change of probability measures ; Convergence ; Filtering ; Filtration ; grid based filtering ; Hidden Markov models ; Kernel ; Markov analysis ; Markov chains ; Markov processes ; Nonlinear filtering ; Optimization ; Quantization ; Quantization (signal) ; sequential estimation</subject><ispartof>IEEE transactions on signal processing, 2016-08, Vol.64 (16), p.4244-4259</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-330699c5f3bf80979b0074fc79c11c44b815b38d1417b848669f8bb53bdb8d753</citedby><cites>FETCH-LOGICAL-c324t-330699c5f3bf80979b0074fc79c11c44b815b38d1417b848669f8bb53bdb8d753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7457725$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7457725$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kalogerias, Dionysios S.</creatorcontrib><creatorcontrib>Petropulu, Athina P.</creatorcontrib><title>Grid Based Nonlinear Filtering Revisited: Recursive Estimation &amp; Asymptotic Optimality</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper revisits grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization, namely, the Markovian type and the marginal type. A set of novel, relaxed sufficient conditions is proposed, ensuring strong and fully characterized pathwise convergence of these filters to the respective MMSE state estimator. In particular, for marginal state quantizations, the notion of conditional regularity of stochastic kernels is introduced which, to the best of the authors' knowledge, constitutes the most relaxed condition under which asymptotic optimality of the respective grid based filters is guaranteed. Further, the convergence results are extended to include filtering of bounded and continuous functionals of the state, as well as recursive approximate state prediction. For both Markovian and marginal quantizations, the whole development of the respective grid-based filters relies more on linear-algebraic techniques and less on measure theoretic arguments, making the presentation considerably shorter and technically simpler.</description><subject>approximate filtering</subject><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>change of probability measures</subject><subject>Convergence</subject><subject>Filtering</subject><subject>Filtration</subject><subject>grid based filtering</subject><subject>Hidden Markov models</subject><subject>Kernel</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Nonlinear filtering</subject><subject>Optimization</subject><subject>Quantization</subject><subject>Quantization (signal)</subject><subject>sequential estimation</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkNFLwzAQh4soOKfvgi8FQXzpzDVJk_imY5vCcKJTfCtNmkpG19YkHey_N2PDB5_ux_HdcfdF0SWgEQASd8v311GKIBullDIMcBQNQBBIEGHZcciI4oRy9nUanTm3QggIEdkg-pxZU8aPhdNl_NI2tWl0YeOpqb22pvmO3_TGOON1eR-i6q0zGx1PnDfrwpu2iW_iB7ddd771RsWLbtevjd-eRydVUTt9cajD6GM6WY6fkvli9jx-mCcKp8QnGKNMCEUrLCuOBBMSIUYqxYQCUIRIDlRiXgIBJjnhWSYqLiXFspS8ZBQPo9v93s62P712Pl8bp3RdF41ue5cDxzRDOEtxQK__oau2t024LlCIAGaAeKDQnlK2dc7qKu9s-Mluc0D5TnQeROc70flBdBi52o8YrfUfzghlLKX4F4LJeFc</recordid><startdate>20160815</startdate><enddate>20160815</enddate><creator>Kalogerias, Dionysios S.</creator><creator>Petropulu, Athina P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160815</creationdate><title>Grid Based Nonlinear Filtering Revisited: Recursive Estimation &amp; Asymptotic Optimality</title><author>Kalogerias, Dionysios S. ; Petropulu, Athina P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-330699c5f3bf80979b0074fc79c11c44b815b38d1417b848669f8bb53bdb8d753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>approximate filtering</topic><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>change of probability measures</topic><topic>Convergence</topic><topic>Filtering</topic><topic>Filtration</topic><topic>grid based filtering</topic><topic>Hidden Markov models</topic><topic>Kernel</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Nonlinear filtering</topic><topic>Optimization</topic><topic>Quantization</topic><topic>Quantization (signal)</topic><topic>sequential estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalogerias, Dionysios S.</creatorcontrib><creatorcontrib>Petropulu, Athina P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalogerias, Dionysios S.</au><au>Petropulu, Athina P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grid Based Nonlinear Filtering Revisited: Recursive Estimation &amp; Asymptotic Optimality</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2016-08-15</date><risdate>2016</risdate><volume>64</volume><issue>16</issue><spage>4244</spage><epage>4259</epage><pages>4244-4259</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper revisits grid based recursive approximate filtering of general Markov processes in discrete time, partially observed in conditionally Gaussian noise. The grid based filters considered rely on two types of state quantization, namely, the Markovian type and the marginal type. A set of novel, relaxed sufficient conditions is proposed, ensuring strong and fully characterized pathwise convergence of these filters to the respective MMSE state estimator. In particular, for marginal state quantizations, the notion of conditional regularity of stochastic kernels is introduced which, to the best of the authors' knowledge, constitutes the most relaxed condition under which asymptotic optimality of the respective grid based filters is guaranteed. Further, the convergence results are extended to include filtering of bounded and continuous functionals of the state, as well as recursive approximate state prediction. For both Markovian and marginal quantizations, the whole development of the respective grid-based filters relies more on linear-algebraic techniques and less on measure theoretic arguments, making the presentation considerably shorter and technically simpler.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2016.2557311</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2016-08, Vol.64 (16), p.4244-4259
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2016_2557311
source IEEE Electronic Library (IEL)
subjects approximate filtering
Approximation
Asymptotic properties
change of probability measures
Convergence
Filtering
Filtration
grid based filtering
Hidden Markov models
Kernel
Markov analysis
Markov chains
Markov processes
Nonlinear filtering
Optimization
Quantization
Quantization (signal)
sequential estimation
title Grid Based Nonlinear Filtering Revisited: Recursive Estimation & Asymptotic Optimality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grid%20Based%20Nonlinear%20Filtering%20Revisited:%20Recursive%20Estimation%20&%20Asymptotic%20Optimality&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Kalogerias,%20Dionysios%20S.&rft.date=2016-08-15&rft.volume=64&rft.issue=16&rft.spage=4244&rft.epage=4259&rft.pages=4244-4259&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2557311&rft_dat=%3Cproquest_RIE%3E1835603623%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1804137108&rft_id=info:pmid/&rft_ieee_id=7457725&rfr_iscdi=true