Accurate Localization of a Rigid Body Using Multiple Sensors and Landmarks

This paper develops estimators for locating a rigid body using the time measurements, and the Doppler as well if it is moving, between the sensors in the rigid body and a few landmarks outside. The challenge of rigid body localization is that in addition to the position, we are also interested in ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2015-12, Vol.63 (24), p.6459-6472
Hauptverfasser: Shanjie Chen, Ho, K. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6472
container_issue 24
container_start_page 6459
container_title IEEE transactions on signal processing
container_volume 63
creator Shanjie Chen
Ho, K. C.
description This paper develops estimators for locating a rigid body using the time measurements, and the Doppler as well if it is moving, between the sensors in the rigid body and a few landmarks outside. The challenge of rigid body localization is that in addition to the position, we are also interested in obtaining the rotation parameters of the rigid body that must belong to the special orthogonal group. The proposed estimators are non-iterative and have two steps: preliminary and refinement. The preliminary step provides a coarse estimate and the refinement step improves the first step estimate to yield an accurate solution. When the rigid body is stationary, we are able to locate the body with accuracy higher than the solutions of comparable complexity found in the literature. When the rigid body is moving, we develop an estimator that contains the additional unknowns of angular and translational velocities. Simulations show that the proposed estimators, in both stationary and moving cases, can approach the Cramer-Rao Lower Bound performance under Gaussian noise over the small error region.
doi_str_mv 10.1109/TSP.2015.2465356
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2015_2465356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7180388</ieee_id><sourcerecordid>3883599941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-15aad63cc8a90afbc93382f688f7f13854fa8fd4b2da98964d646d30822a53e43</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU3A9dRk8phkWcUnI4ptwV1I8yip46QmM4v6653S4ubeuzjn3MMHwCVGE4yRvJnP3iclwmxSUs4I40dghCXFBaIVPx5uxEjBRPV5Cs5yXiOEKZV8BF6mxvRJdw7W0egm_OouxBZGDzX8CKtg4W20W7jIoV3B177pwqZxcObaHFOGurWwHsa3Tl_5HJx43WR3cdhjsHi4n989FfXb4_PdtC5MKXFXYKa15cQYoSXSfmkkIaL0XAhfeUwEo14Lb-mytFoKyanllFuCRFlqRhwlY3C9z92k-NO73Kl17FM7vFS4IkIQwpEYVGivMinmnJxXmxSGnluFkdoRUwMxtSOmDsQGy9XeEpxz__IKC7RL_QM2FmZu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738833608</pqid></control><display><type>article</type><title>Accurate Localization of a Rigid Body Using Multiple Sensors and Landmarks</title><source>IEEE Electronic Library (IEL)</source><creator>Shanjie Chen ; Ho, K. C.</creator><creatorcontrib>Shanjie Chen ; Ho, K. C.</creatorcontrib><description>This paper develops estimators for locating a rigid body using the time measurements, and the Doppler as well if it is moving, between the sensors in the rigid body and a few landmarks outside. The challenge of rigid body localization is that in addition to the position, we are also interested in obtaining the rotation parameters of the rigid body that must belong to the special orthogonal group. The proposed estimators are non-iterative and have two steps: preliminary and refinement. The preliminary step provides a coarse estimate and the refinement step improves the first step estimate to yield an accurate solution. When the rigid body is stationary, we are able to locate the body with accuracy higher than the solutions of comparable complexity found in the literature. When the rigid body is moving, we develop an estimator that contains the additional unknowns of angular and translational velocities. Simulations show that the proposed estimators, in both stationary and moving cases, can approach the Cramer-Rao Lower Bound performance under Gaussian noise over the small error region.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2465356</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric measurements ; Closed-form solution ; Closed-form solutions ; Complexity theory ; divide and conquer ; GTRS ; Maximum likelihood estimation ; moving rigid body ; Optimization ; position and orientation ; Sensors ; sequential estimation</subject><ispartof>IEEE transactions on signal processing, 2015-12, Vol.63 (24), p.6459-6472</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-15aad63cc8a90afbc93382f688f7f13854fa8fd4b2da98964d646d30822a53e43</citedby><cites>FETCH-LOGICAL-c291t-15aad63cc8a90afbc93382f688f7f13854fa8fd4b2da98964d646d30822a53e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7180388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7180388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shanjie Chen</creatorcontrib><creatorcontrib>Ho, K. C.</creatorcontrib><title>Accurate Localization of a Rigid Body Using Multiple Sensors and Landmarks</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper develops estimators for locating a rigid body using the time measurements, and the Doppler as well if it is moving, between the sensors in the rigid body and a few landmarks outside. The challenge of rigid body localization is that in addition to the position, we are also interested in obtaining the rotation parameters of the rigid body that must belong to the special orthogonal group. The proposed estimators are non-iterative and have two steps: preliminary and refinement. The preliminary step provides a coarse estimate and the refinement step improves the first step estimate to yield an accurate solution. When the rigid body is stationary, we are able to locate the body with accuracy higher than the solutions of comparable complexity found in the literature. When the rigid body is moving, we develop an estimator that contains the additional unknowns of angular and translational velocities. Simulations show that the proposed estimators, in both stationary and moving cases, can approach the Cramer-Rao Lower Bound performance under Gaussian noise over the small error region.</description><subject>Atmospheric measurements</subject><subject>Closed-form solution</subject><subject>Closed-form solutions</subject><subject>Complexity theory</subject><subject>divide and conquer</subject><subject>GTRS</subject><subject>Maximum likelihood estimation</subject><subject>moving rigid body</subject><subject>Optimization</subject><subject>position and orientation</subject><subject>Sensors</subject><subject>sequential estimation</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKt7wU3A9dRk8phkWcUnI4ptwV1I8yip46QmM4v6653S4ubeuzjn3MMHwCVGE4yRvJnP3iclwmxSUs4I40dghCXFBaIVPx5uxEjBRPV5Cs5yXiOEKZV8BF6mxvRJdw7W0egm_OouxBZGDzX8CKtg4W20W7jIoV3B177pwqZxcObaHFOGurWwHsa3Tl_5HJx43WR3cdhjsHi4n989FfXb4_PdtC5MKXFXYKa15cQYoSXSfmkkIaL0XAhfeUwEo14Lb-mytFoKyanllFuCRFlqRhwlY3C9z92k-NO73Kl17FM7vFS4IkIQwpEYVGivMinmnJxXmxSGnluFkdoRUwMxtSOmDsQGy9XeEpxz__IKC7RL_QM2FmZu</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Shanjie Chen</creator><creator>Ho, K. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151215</creationdate><title>Accurate Localization of a Rigid Body Using Multiple Sensors and Landmarks</title><author>Shanjie Chen ; Ho, K. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-15aad63cc8a90afbc93382f688f7f13854fa8fd4b2da98964d646d30822a53e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric measurements</topic><topic>Closed-form solution</topic><topic>Closed-form solutions</topic><topic>Complexity theory</topic><topic>divide and conquer</topic><topic>GTRS</topic><topic>Maximum likelihood estimation</topic><topic>moving rigid body</topic><topic>Optimization</topic><topic>position and orientation</topic><topic>Sensors</topic><topic>sequential estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shanjie Chen</creatorcontrib><creatorcontrib>Ho, K. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shanjie Chen</au><au>Ho, K. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Localization of a Rigid Body Using Multiple Sensors and Landmarks</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-12-15</date><risdate>2015</risdate><volume>63</volume><issue>24</issue><spage>6459</spage><epage>6472</epage><pages>6459-6472</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper develops estimators for locating a rigid body using the time measurements, and the Doppler as well if it is moving, between the sensors in the rigid body and a few landmarks outside. The challenge of rigid body localization is that in addition to the position, we are also interested in obtaining the rotation parameters of the rigid body that must belong to the special orthogonal group. The proposed estimators are non-iterative and have two steps: preliminary and refinement. The preliminary step provides a coarse estimate and the refinement step improves the first step estimate to yield an accurate solution. When the rigid body is stationary, we are able to locate the body with accuracy higher than the solutions of comparable complexity found in the literature. When the rigid body is moving, we develop an estimator that contains the additional unknowns of angular and translational velocities. Simulations show that the proposed estimators, in both stationary and moving cases, can approach the Cramer-Rao Lower Bound performance under Gaussian noise over the small error region.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2015.2465356</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2015-12, Vol.63 (24), p.6459-6472
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2015_2465356
source IEEE Electronic Library (IEL)
subjects Atmospheric measurements
Closed-form solution
Closed-form solutions
Complexity theory
divide and conquer
GTRS
Maximum likelihood estimation
moving rigid body
Optimization
position and orientation
Sensors
sequential estimation
title Accurate Localization of a Rigid Body Using Multiple Sensors and Landmarks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Localization%20of%20a%20Rigid%20Body%20Using%20Multiple%20Sensors%20and%20Landmarks&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Shanjie%20Chen&rft.date=2015-12-15&rft.volume=63&rft.issue=24&rft.spage=6459&rft.epage=6472&rft.pages=6459-6472&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2465356&rft_dat=%3Cproquest_RIE%3E3883599941%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738833608&rft_id=info:pmid/&rft_ieee_id=7180388&rfr_iscdi=true