Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation
In compressive sensing (CS), the restricted isometry property (RIP) is an important condition on measurement matrices which guarantees the recovery of sparse signals with undersampled measurements. It has been proved in the prior works that both random (e.g., i.i.d. Gaussian, Bernoulli, ...) and Toe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2015-11, Vol.63 (21), p.5665-5676 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5676 |
---|---|
container_issue | 21 |
container_start_page | 5665 |
container_title | IEEE transactions on signal processing |
container_volume | 63 |
creator | Dehghan, Hoda Dansereau, Richard M. Chan, Adrian D. C. |
description | In compressive sensing (CS), the restricted isometry property (RIP) is an important condition on measurement matrices which guarantees the recovery of sparse signals with undersampled measurements. It has been proved in the prior works that both random (e.g., i.i.d. Gaussian, Bernoulli, ...) and Toeplitz matrices satisfy the RIP with high probability. However, structured matrices, such as banded Toeplitz matrices have drawn more attention since their structures have the advantage of fast matrix multiplication which may decrease the computational complexity of recovery algorithms. In this paper, we show that banded block Toeplitz matrices satisfy the RIP condition with high probability. Banded block Toeplitz matrices can be used in the sparse multi-channel source separation. The banded block Toeplitz matrices decrease the computational complexity while they have fewer number of non-zero entries in comparison to the same dimensional banded Toeplitz matrices. Furthermore, our simulation results show that banded block Toeplitz matrices outperform banded Toeplitz matrices in signal estimation. The analytical RIP bound for banded block Toeplitz matrices is provided in this paper and the RIP bound of sparse Gaussian matrices is also obtained as an upper bound for banded block Toeplitz matrices. Our simulation and analytical results show that sparse Gaussian random matrices do satisfy the RIP condition with high probability. The probability of satisfying the RIP depends on the probability of zero entries. |
doi_str_mv | 10.1109/TSP.2015.2457391 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2015_2457391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7160757</ieee_id><sourcerecordid>1762077778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-264e0ee0e34b8c56e5f0e9010b90ce62c38b3d3ebd44b647163c526bc3ef056e3</originalsourceid><addsrcrecordid>eNpdkctLxDAQxoso-LwLXgJevHSdPJq2R118gaLoCt5Km53FaLepSaqsB_92Z13xYBiYMPl9wxe-JNnnMOIcyuPJw91IAM9GQmW5LPlassVLxVNQuV6nO2QyzYr8aTPZDuEFgCtV6q3k6x5D9NZEnLKr4OYY_YLdedejjwvmOnZad1N6O22deWUTh31r4ye7qZciDOzDxmd20tPU1NESHx27Gdpo0_Fz3XXYsrHr3l07RPuO7MEN3lDDvvY_-G6yMavbgHu_fSd5PD-bjC_T69uLq_HJdWqkUDEVWiEglVRNYTKN2QywBA5NCQa1MLJo5FRiM1Wq0SrnWppM6MZInAHhcic5Wu3tvXsb6MvV3AaDbVt36IZQ8VwLyOkUhB7-Q1_IdUfuiBKFkAWInChYUca7EDzOqt7bee0XFYdqGUhFgVTLQKrfQEhysJJYRPzDySvkBHwDowWIsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728238027</pqid></control><display><type>article</type><title>Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation</title><source>IEEE Electronic Library (IEL)</source><creator>Dehghan, Hoda ; Dansereau, Richard M. ; Chan, Adrian D. C.</creator><creatorcontrib>Dehghan, Hoda ; Dansereau, Richard M. ; Chan, Adrian D. C.</creatorcontrib><description>In compressive sensing (CS), the restricted isometry property (RIP) is an important condition on measurement matrices which guarantees the recovery of sparse signals with undersampled measurements. It has been proved in the prior works that both random (e.g., i.i.d. Gaussian, Bernoulli, ...) and Toeplitz matrices satisfy the RIP with high probability. However, structured matrices, such as banded Toeplitz matrices have drawn more attention since their structures have the advantage of fast matrix multiplication which may decrease the computational complexity of recovery algorithms. In this paper, we show that banded block Toeplitz matrices satisfy the RIP condition with high probability. Banded block Toeplitz matrices can be used in the sparse multi-channel source separation. The banded block Toeplitz matrices decrease the computational complexity while they have fewer number of non-zero entries in comparison to the same dimensional banded Toeplitz matrices. Furthermore, our simulation results show that banded block Toeplitz matrices outperform banded Toeplitz matrices in signal estimation. The analytical RIP bound for banded block Toeplitz matrices is provided in this paper and the RIP bound of sparse Gaussian matrices is also obtained as an upper bound for banded block Toeplitz matrices. Our simulation and analytical results show that sparse Gaussian random matrices do satisfy the RIP condition with high probability. The probability of satisfying the RIP depends on the probability of zero entries.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2457391</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Banded block Toeplitz matrices ; Blocking ; Complexity ; Compressed sensing ; Computation ; Computational complexity ; Computer simulation ; Electromyography ; Gaussian ; Mathematical analysis ; Matrix decomposition ; Recovery ; restricted isometry property ; Separation ; Source separation ; sparse Gaussian random matrices ; Sparse matrices ; Time-domain analysis</subject><ispartof>IEEE transactions on signal processing, 2015-11, Vol.63 (21), p.5665-5676</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-264e0ee0e34b8c56e5f0e9010b90ce62c38b3d3ebd44b647163c526bc3ef056e3</citedby><cites>FETCH-LOGICAL-c324t-264e0ee0e34b8c56e5f0e9010b90ce62c38b3d3ebd44b647163c526bc3ef056e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7160757$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7160757$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dehghan, Hoda</creatorcontrib><creatorcontrib>Dansereau, Richard M.</creatorcontrib><creatorcontrib>Chan, Adrian D. C.</creatorcontrib><title>Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In compressive sensing (CS), the restricted isometry property (RIP) is an important condition on measurement matrices which guarantees the recovery of sparse signals with undersampled measurements. It has been proved in the prior works that both random (e.g., i.i.d. Gaussian, Bernoulli, ...) and Toeplitz matrices satisfy the RIP with high probability. However, structured matrices, such as banded Toeplitz matrices have drawn more attention since their structures have the advantage of fast matrix multiplication which may decrease the computational complexity of recovery algorithms. In this paper, we show that banded block Toeplitz matrices satisfy the RIP condition with high probability. Banded block Toeplitz matrices can be used in the sparse multi-channel source separation. The banded block Toeplitz matrices decrease the computational complexity while they have fewer number of non-zero entries in comparison to the same dimensional banded Toeplitz matrices. Furthermore, our simulation results show that banded block Toeplitz matrices outperform banded Toeplitz matrices in signal estimation. The analytical RIP bound for banded block Toeplitz matrices is provided in this paper and the RIP bound of sparse Gaussian matrices is also obtained as an upper bound for banded block Toeplitz matrices. Our simulation and analytical results show that sparse Gaussian random matrices do satisfy the RIP condition with high probability. The probability of satisfying the RIP depends on the probability of zero entries.</description><subject>Banded block Toeplitz matrices</subject><subject>Blocking</subject><subject>Complexity</subject><subject>Compressed sensing</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Computer simulation</subject><subject>Electromyography</subject><subject>Gaussian</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Recovery</subject><subject>restricted isometry property</subject><subject>Separation</subject><subject>Source separation</subject><subject>sparse Gaussian random matrices</subject><subject>Sparse matrices</subject><subject>Time-domain analysis</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctLxDAQxoso-LwLXgJevHSdPJq2R118gaLoCt5Km53FaLepSaqsB_92Z13xYBiYMPl9wxe-JNnnMOIcyuPJw91IAM9GQmW5LPlassVLxVNQuV6nO2QyzYr8aTPZDuEFgCtV6q3k6x5D9NZEnLKr4OYY_YLdedejjwvmOnZad1N6O22deWUTh31r4ye7qZciDOzDxmd20tPU1NESHx27Gdpo0_Fz3XXYsrHr3l07RPuO7MEN3lDDvvY_-G6yMavbgHu_fSd5PD-bjC_T69uLq_HJdWqkUDEVWiEglVRNYTKN2QywBA5NCQa1MLJo5FRiM1Wq0SrnWppM6MZInAHhcic5Wu3tvXsb6MvV3AaDbVt36IZQ8VwLyOkUhB7-Q1_IdUfuiBKFkAWInChYUca7EDzOqt7bee0XFYdqGUhFgVTLQKrfQEhysJJYRPzDySvkBHwDowWIsg</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Dehghan, Hoda</creator><creator>Dansereau, Richard M.</creator><creator>Chan, Adrian D. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20151101</creationdate><title>Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation</title><author>Dehghan, Hoda ; Dansereau, Richard M. ; Chan, Adrian D. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-264e0ee0e34b8c56e5f0e9010b90ce62c38b3d3ebd44b647163c526bc3ef056e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Banded block Toeplitz matrices</topic><topic>Blocking</topic><topic>Complexity</topic><topic>Compressed sensing</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Computer simulation</topic><topic>Electromyography</topic><topic>Gaussian</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Recovery</topic><topic>restricted isometry property</topic><topic>Separation</topic><topic>Source separation</topic><topic>sparse Gaussian random matrices</topic><topic>Sparse matrices</topic><topic>Time-domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghan, Hoda</creatorcontrib><creatorcontrib>Dansereau, Richard M.</creatorcontrib><creatorcontrib>Chan, Adrian D. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dehghan, Hoda</au><au>Dansereau, Richard M.</au><au>Chan, Adrian D. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>63</volume><issue>21</issue><spage>5665</spage><epage>5676</epage><pages>5665-5676</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In compressive sensing (CS), the restricted isometry property (RIP) is an important condition on measurement matrices which guarantees the recovery of sparse signals with undersampled measurements. It has been proved in the prior works that both random (e.g., i.i.d. Gaussian, Bernoulli, ...) and Toeplitz matrices satisfy the RIP with high probability. However, structured matrices, such as banded Toeplitz matrices have drawn more attention since their structures have the advantage of fast matrix multiplication which may decrease the computational complexity of recovery algorithms. In this paper, we show that banded block Toeplitz matrices satisfy the RIP condition with high probability. Banded block Toeplitz matrices can be used in the sparse multi-channel source separation. The banded block Toeplitz matrices decrease the computational complexity while they have fewer number of non-zero entries in comparison to the same dimensional banded Toeplitz matrices. Furthermore, our simulation results show that banded block Toeplitz matrices outperform banded Toeplitz matrices in signal estimation. The analytical RIP bound for banded block Toeplitz matrices is provided in this paper and the RIP bound of sparse Gaussian matrices is also obtained as an upper bound for banded block Toeplitz matrices. Our simulation and analytical results show that sparse Gaussian random matrices do satisfy the RIP condition with high probability. The probability of satisfying the RIP depends on the probability of zero entries.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2015.2457391</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2015-11, Vol.63 (21), p.5665-5676 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2015_2457391 |
source | IEEE Electronic Library (IEL) |
subjects | Banded block Toeplitz matrices Blocking Complexity Compressed sensing Computation Computational complexity Computer simulation Electromyography Gaussian Mathematical analysis Matrix decomposition Recovery restricted isometry property Separation Source separation sparse Gaussian random matrices Sparse matrices Time-domain analysis |
title | Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restricted%20Isometry%20Property%20on%20Banded%20Block%20Toeplitz%20Matrices%20with%20Application%20to%20Multi-Channel%20Convolutive%20Source%20Separation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Dehghan,%20Hoda&rft.date=2015-11-01&rft.volume=63&rft.issue=21&rft.spage=5665&rft.epage=5676&rft.pages=5665-5676&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2457391&rft_dat=%3Cproquest_RIE%3E1762077778%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728238027&rft_id=info:pmid/&rft_ieee_id=7160757&rfr_iscdi=true |