Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation

In compressive sensing (CS), the restricted isometry property (RIP) is an important condition on measurement matrices which guarantees the recovery of sparse signals with undersampled measurements. It has been proved in the prior works that both random (e.g., i.i.d. Gaussian, Bernoulli, ...) and Toe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2015-11, Vol.63 (21), p.5665-5676
Hauptverfasser: Dehghan, Hoda, Dansereau, Richard M., Chan, Adrian D. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5676
container_issue 21
container_start_page 5665
container_title IEEE transactions on signal processing
container_volume 63
creator Dehghan, Hoda
Dansereau, Richard M.
Chan, Adrian D. C.
description In compressive sensing (CS), the restricted isometry property (RIP) is an important condition on measurement matrices which guarantees the recovery of sparse signals with undersampled measurements. It has been proved in the prior works that both random (e.g., i.i.d. Gaussian, Bernoulli, ...) and Toeplitz matrices satisfy the RIP with high probability. However, structured matrices, such as banded Toeplitz matrices have drawn more attention since their structures have the advantage of fast matrix multiplication which may decrease the computational complexity of recovery algorithms. In this paper, we show that banded block Toeplitz matrices satisfy the RIP condition with high probability. Banded block Toeplitz matrices can be used in the sparse multi-channel source separation. The banded block Toeplitz matrices decrease the computational complexity while they have fewer number of non-zero entries in comparison to the same dimensional banded Toeplitz matrices. Furthermore, our simulation results show that banded block Toeplitz matrices outperform banded Toeplitz matrices in signal estimation. The analytical RIP bound for banded block Toeplitz matrices is provided in this paper and the RIP bound of sparse Gaussian matrices is also obtained as an upper bound for banded block Toeplitz matrices. Our simulation and analytical results show that sparse Gaussian random matrices do satisfy the RIP condition with high probability. The probability of satisfying the RIP depends on the probability of zero entries.
doi_str_mv 10.1109/TSP.2015.2457391
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2015_2457391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7160757</ieee_id><sourcerecordid>1762077778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-264e0ee0e34b8c56e5f0e9010b90ce62c38b3d3ebd44b647163c526bc3ef056e3</originalsourceid><addsrcrecordid>eNpdkctLxDAQxoso-LwLXgJevHSdPJq2R118gaLoCt5Km53FaLepSaqsB_92Z13xYBiYMPl9wxe-JNnnMOIcyuPJw91IAM9GQmW5LPlassVLxVNQuV6nO2QyzYr8aTPZDuEFgCtV6q3k6x5D9NZEnLKr4OYY_YLdedejjwvmOnZad1N6O22deWUTh31r4ye7qZciDOzDxmd20tPU1NESHx27Gdpo0_Fz3XXYsrHr3l07RPuO7MEN3lDDvvY_-G6yMavbgHu_fSd5PD-bjC_T69uLq_HJdWqkUDEVWiEglVRNYTKN2QywBA5NCQa1MLJo5FRiM1Wq0SrnWppM6MZInAHhcic5Wu3tvXsb6MvV3AaDbVt36IZQ8VwLyOkUhB7-Q1_IdUfuiBKFkAWInChYUca7EDzOqt7bee0XFYdqGUhFgVTLQKrfQEhysJJYRPzDySvkBHwDowWIsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728238027</pqid></control><display><type>article</type><title>Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation</title><source>IEEE Electronic Library (IEL)</source><creator>Dehghan, Hoda ; Dansereau, Richard M. ; Chan, Adrian D. C.</creator><creatorcontrib>Dehghan, Hoda ; Dansereau, Richard M. ; Chan, Adrian D. C.</creatorcontrib><description>In compressive sensing (CS), the restricted isometry property (RIP) is an important condition on measurement matrices which guarantees the recovery of sparse signals with undersampled measurements. It has been proved in the prior works that both random (e.g., i.i.d. Gaussian, Bernoulli, ...) and Toeplitz matrices satisfy the RIP with high probability. However, structured matrices, such as banded Toeplitz matrices have drawn more attention since their structures have the advantage of fast matrix multiplication which may decrease the computational complexity of recovery algorithms. In this paper, we show that banded block Toeplitz matrices satisfy the RIP condition with high probability. Banded block Toeplitz matrices can be used in the sparse multi-channel source separation. The banded block Toeplitz matrices decrease the computational complexity while they have fewer number of non-zero entries in comparison to the same dimensional banded Toeplitz matrices. Furthermore, our simulation results show that banded block Toeplitz matrices outperform banded Toeplitz matrices in signal estimation. The analytical RIP bound for banded block Toeplitz matrices is provided in this paper and the RIP bound of sparse Gaussian matrices is also obtained as an upper bound for banded block Toeplitz matrices. Our simulation and analytical results show that sparse Gaussian random matrices do satisfy the RIP condition with high probability. The probability of satisfying the RIP depends on the probability of zero entries.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2457391</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Banded block Toeplitz matrices ; Blocking ; Complexity ; Compressed sensing ; Computation ; Computational complexity ; Computer simulation ; Electromyography ; Gaussian ; Mathematical analysis ; Matrix decomposition ; Recovery ; restricted isometry property ; Separation ; Source separation ; sparse Gaussian random matrices ; Sparse matrices ; Time-domain analysis</subject><ispartof>IEEE transactions on signal processing, 2015-11, Vol.63 (21), p.5665-5676</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-264e0ee0e34b8c56e5f0e9010b90ce62c38b3d3ebd44b647163c526bc3ef056e3</citedby><cites>FETCH-LOGICAL-c324t-264e0ee0e34b8c56e5f0e9010b90ce62c38b3d3ebd44b647163c526bc3ef056e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7160757$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7160757$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dehghan, Hoda</creatorcontrib><creatorcontrib>Dansereau, Richard M.</creatorcontrib><creatorcontrib>Chan, Adrian D. C.</creatorcontrib><title>Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In compressive sensing (CS), the restricted isometry property (RIP) is an important condition on measurement matrices which guarantees the recovery of sparse signals with undersampled measurements. It has been proved in the prior works that both random (e.g., i.i.d. Gaussian, Bernoulli, ...) and Toeplitz matrices satisfy the RIP with high probability. However, structured matrices, such as banded Toeplitz matrices have drawn more attention since their structures have the advantage of fast matrix multiplication which may decrease the computational complexity of recovery algorithms. In this paper, we show that banded block Toeplitz matrices satisfy the RIP condition with high probability. Banded block Toeplitz matrices can be used in the sparse multi-channel source separation. The banded block Toeplitz matrices decrease the computational complexity while they have fewer number of non-zero entries in comparison to the same dimensional banded Toeplitz matrices. Furthermore, our simulation results show that banded block Toeplitz matrices outperform banded Toeplitz matrices in signal estimation. The analytical RIP bound for banded block Toeplitz matrices is provided in this paper and the RIP bound of sparse Gaussian matrices is also obtained as an upper bound for banded block Toeplitz matrices. Our simulation and analytical results show that sparse Gaussian random matrices do satisfy the RIP condition with high probability. The probability of satisfying the RIP depends on the probability of zero entries.</description><subject>Banded block Toeplitz matrices</subject><subject>Blocking</subject><subject>Complexity</subject><subject>Compressed sensing</subject><subject>Computation</subject><subject>Computational complexity</subject><subject>Computer simulation</subject><subject>Electromyography</subject><subject>Gaussian</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Recovery</subject><subject>restricted isometry property</subject><subject>Separation</subject><subject>Source separation</subject><subject>sparse Gaussian random matrices</subject><subject>Sparse matrices</subject><subject>Time-domain analysis</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctLxDAQxoso-LwLXgJevHSdPJq2R118gaLoCt5Km53FaLepSaqsB_92Z13xYBiYMPl9wxe-JNnnMOIcyuPJw91IAM9GQmW5LPlassVLxVNQuV6nO2QyzYr8aTPZDuEFgCtV6q3k6x5D9NZEnLKr4OYY_YLdedejjwvmOnZad1N6O22deWUTh31r4ye7qZciDOzDxmd20tPU1NESHx27Gdpo0_Fz3XXYsrHr3l07RPuO7MEN3lDDvvY_-G6yMavbgHu_fSd5PD-bjC_T69uLq_HJdWqkUDEVWiEglVRNYTKN2QywBA5NCQa1MLJo5FRiM1Wq0SrnWppM6MZInAHhcic5Wu3tvXsb6MvV3AaDbVt36IZQ8VwLyOkUhB7-Q1_IdUfuiBKFkAWInChYUca7EDzOqt7bee0XFYdqGUhFgVTLQKrfQEhysJJYRPzDySvkBHwDowWIsg</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Dehghan, Hoda</creator><creator>Dansereau, Richard M.</creator><creator>Chan, Adrian D. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20151101</creationdate><title>Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation</title><author>Dehghan, Hoda ; Dansereau, Richard M. ; Chan, Adrian D. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-264e0ee0e34b8c56e5f0e9010b90ce62c38b3d3ebd44b647163c526bc3ef056e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Banded block Toeplitz matrices</topic><topic>Blocking</topic><topic>Complexity</topic><topic>Compressed sensing</topic><topic>Computation</topic><topic>Computational complexity</topic><topic>Computer simulation</topic><topic>Electromyography</topic><topic>Gaussian</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Recovery</topic><topic>restricted isometry property</topic><topic>Separation</topic><topic>Source separation</topic><topic>sparse Gaussian random matrices</topic><topic>Sparse matrices</topic><topic>Time-domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dehghan, Hoda</creatorcontrib><creatorcontrib>Dansereau, Richard M.</creatorcontrib><creatorcontrib>Chan, Adrian D. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dehghan, Hoda</au><au>Dansereau, Richard M.</au><au>Chan, Adrian D. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>63</volume><issue>21</issue><spage>5665</spage><epage>5676</epage><pages>5665-5676</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In compressive sensing (CS), the restricted isometry property (RIP) is an important condition on measurement matrices which guarantees the recovery of sparse signals with undersampled measurements. It has been proved in the prior works that both random (e.g., i.i.d. Gaussian, Bernoulli, ...) and Toeplitz matrices satisfy the RIP with high probability. However, structured matrices, such as banded Toeplitz matrices have drawn more attention since their structures have the advantage of fast matrix multiplication which may decrease the computational complexity of recovery algorithms. In this paper, we show that banded block Toeplitz matrices satisfy the RIP condition with high probability. Banded block Toeplitz matrices can be used in the sparse multi-channel source separation. The banded block Toeplitz matrices decrease the computational complexity while they have fewer number of non-zero entries in comparison to the same dimensional banded Toeplitz matrices. Furthermore, our simulation results show that banded block Toeplitz matrices outperform banded Toeplitz matrices in signal estimation. The analytical RIP bound for banded block Toeplitz matrices is provided in this paper and the RIP bound of sparse Gaussian matrices is also obtained as an upper bound for banded block Toeplitz matrices. Our simulation and analytical results show that sparse Gaussian random matrices do satisfy the RIP condition with high probability. The probability of satisfying the RIP depends on the probability of zero entries.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2015.2457391</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2015-11, Vol.63 (21), p.5665-5676
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2015_2457391
source IEEE Electronic Library (IEL)
subjects Banded block Toeplitz matrices
Blocking
Complexity
Compressed sensing
Computation
Computational complexity
Computer simulation
Electromyography
Gaussian
Mathematical analysis
Matrix decomposition
Recovery
restricted isometry property
Separation
Source separation
sparse Gaussian random matrices
Sparse matrices
Time-domain analysis
title Restricted Isometry Property on Banded Block Toeplitz Matrices with Application to Multi-Channel Convolutive Source Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Restricted%20Isometry%20Property%20on%20Banded%20Block%20Toeplitz%20Matrices%20with%20Application%20to%20Multi-Channel%20Convolutive%20Source%20Separation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Dehghan,%20Hoda&rft.date=2015-11-01&rft.volume=63&rft.issue=21&rft.spage=5665&rft.epage=5676&rft.pages=5665-5676&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2457391&rft_dat=%3Cproquest_RIE%3E1762077778%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728238027&rft_id=info:pmid/&rft_ieee_id=7160757&rfr_iscdi=true