Poisson Group Testing: A Probabilistic Model for Boolean Compressed Sensing
We introduce a novel probabilistic group testing framework, termed Poisson group testing, in which the number of defectives follows a right-truncated Poisson distribution. The Poisson model has a number of new applications, including dynamic testing with diminishing relative rates of defectives. We...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2015-08, Vol.63 (16), p.4396-4410 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a novel probabilistic group testing framework, termed Poisson group testing, in which the number of defectives follows a right-truncated Poisson distribution. The Poisson model has a number of new applications, including dynamic testing with diminishing relative rates of defectives. We consider both nonadaptive and semi-adaptive identification methods. For nonadaptive methods, we derive a lower bound on the number of tests required to identify the defectives with a probability of error that asymptotically converges to zero; in addition, we propose test matrix constructions for which the number of tests closely matches the lower bound. For semiadaptive methods, we describe a lower bound on the expected number of tests required to identify the defectives with zero error probability. In addition, we propose a stage-wise reconstruction algorithm for which the expected number of tests is only a constant factor away from the lower bound. The methods rely only on an estimate of the average number of defectives, rather than on the individual probabilities of subjects being defective. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2015.2446433 |