A Multitask Learning Framework for Broadband Source-Location Mapping Using Passive Sonar

Underwater source localization via passive sonar is a challenging task due to the dynamic and complex nature of the acoustic environment. Different from approaches based on matched-field processing, this work explores broadband underwater source localization within a multitask learning (MTL) framewo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2015-07, Vol.63 (14), p.3599-3614
Hauptverfasser: Forero, Pedro A., Baxley, Paul A., Straatemeier, Logan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3614
container_issue 14
container_start_page 3599
container_title IEEE transactions on signal processing
container_volume 63
creator Forero, Pedro A.
Baxley, Paul A.
Straatemeier, Logan
description Underwater source localization via passive sonar is a challenging task due to the dynamic and complex nature of the acoustic environment. Different from approaches based on matched-field processing, this work explores broadband underwater source localization within a multitask learning (MTL) framework. Here, each task refers to a robust signal approximation problem over a single frequency. MTL provides a natural framework for exchanging information across the narrowband signal-approximation problems and constructing an aggregate (across frequencies) source-localization map. Efficient algorithms based on block coordinate descent (BCD) are developed for solving the source-localization problem. Complex-valued predictor screening rules for reducing the computational complexity of the algorithm are also developed. These rules discard map locations from the set of possible source locations prior to using BCD. They reduce the computational complexity of the localization algorithm without compromising the localization results. Tests of these approaches on synthetic and real data for the SWellEX-3 environment compare the performance of the proposed algorithm to that of alternative methods.
doi_str_mv 10.1109/TSP.2015.2432747
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2015_2432747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7105942</ieee_id><sourcerecordid>3713731071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-cc6f9804f7ae9691a759281fd5f57f95fedf3d0e9e103c506c0b68231799f7e03</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wcuC562TbLLZHGuxKmyx0BZ6C2k2ke3HZk22iv_eLC1eZubwvDPDg9A9hhHGIJ6Wi_mIAGYjQjPCKb9AAywoToHy_DLOwLKUFXx9jW5C2AJgSkU-QOtxMjvuu7pTYZeURvmmbj6TqVcH8-P8LrHOJ8_eqWqjmipZuKPXJi2dVl3tmmSm2rbnV6GvcxVC_W0i1Sh_i66s2gdzd-5DtJq-LCdvafnx-j4Zl6kmAnep1rkVBVDLlRG5wIozQQpsK2YZt4JZU9msAiMMhkwzyDVs8oJkmAthuYFsiB5Pe1vvvo4mdHIbn2ziSYnzghckbhORghOlvQvBGytbXx-U_5UYZO9PRn-y9yfP_mLk4RSpjTH_OI8iBSXZHyira7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1687822819</pqid></control><display><type>article</type><title>A Multitask Learning Framework for Broadband Source-Location Mapping Using Passive Sonar</title><source>IEEE Electronic Library (IEL)</source><creator>Forero, Pedro A. ; Baxley, Paul A. ; Straatemeier, Logan</creator><creatorcontrib>Forero, Pedro A. ; Baxley, Paul A. ; Straatemeier, Logan</creatorcontrib><description>Underwater source localization via passive sonar is a challenging task due to the dynamic and complex nature of the acoustic environment. Different from approaches based on matched-field processing, this work explores broadband underwater source localization within a multitask learning (MTL) framework. Here, each task refers to a robust signal approximation problem over a single frequency. MTL provides a natural framework for exchanging information across the narrowband signal-approximation problems and constructing an aggregate (across frequencies) source-localization map. Efficient algorithms based on block coordinate descent (BCD) are developed for solving the source-localization problem. Complex-valued predictor screening rules for reducing the computational complexity of the algorithm are also developed. These rules discard map locations from the set of possible source locations prior to using BCD. They reduce the computational complexity of the localization algorithm without compromising the localization results. Tests of these approaches on synthetic and real data for the SWellEX-3 environment compare the performance of the proposed algorithm to that of alternative methods.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2432747</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic measurements ; Acoustics ; Algorithms ; Arrays ; Block coordinate descent ; Broadband communication ; Frequency measurement ; group sparsity ; multitask learning ; Position measurement ; Signal processing algorithms ; underwater source localization</subject><ispartof>IEEE transactions on signal processing, 2015-07, Vol.63 (14), p.3599-3614</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-cc6f9804f7ae9691a759281fd5f57f95fedf3d0e9e103c506c0b68231799f7e03</citedby><cites>FETCH-LOGICAL-c291t-cc6f9804f7ae9691a759281fd5f57f95fedf3d0e9e103c506c0b68231799f7e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7105942$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7105942$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Forero, Pedro A.</creatorcontrib><creatorcontrib>Baxley, Paul A.</creatorcontrib><creatorcontrib>Straatemeier, Logan</creatorcontrib><title>A Multitask Learning Framework for Broadband Source-Location Mapping Using Passive Sonar</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Underwater source localization via passive sonar is a challenging task due to the dynamic and complex nature of the acoustic environment. Different from approaches based on matched-field processing, this work explores broadband underwater source localization within a multitask learning (MTL) framework. Here, each task refers to a robust signal approximation problem over a single frequency. MTL provides a natural framework for exchanging information across the narrowband signal-approximation problems and constructing an aggregate (across frequencies) source-localization map. Efficient algorithms based on block coordinate descent (BCD) are developed for solving the source-localization problem. Complex-valued predictor screening rules for reducing the computational complexity of the algorithm are also developed. These rules discard map locations from the set of possible source locations prior to using BCD. They reduce the computational complexity of the localization algorithm without compromising the localization results. Tests of these approaches on synthetic and real data for the SWellEX-3 environment compare the performance of the proposed algorithm to that of alternative methods.</description><subject>Acoustic measurements</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Arrays</subject><subject>Block coordinate descent</subject><subject>Broadband communication</subject><subject>Frequency measurement</subject><subject>group sparsity</subject><subject>multitask learning</subject><subject>Position measurement</subject><subject>Signal processing algorithms</subject><subject>underwater source localization</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wcuC562TbLLZHGuxKmyx0BZ6C2k2ke3HZk22iv_eLC1eZubwvDPDg9A9hhHGIJ6Wi_mIAGYjQjPCKb9AAywoToHy_DLOwLKUFXx9jW5C2AJgSkU-QOtxMjvuu7pTYZeURvmmbj6TqVcH8-P8LrHOJ8_eqWqjmipZuKPXJi2dVl3tmmSm2rbnV6GvcxVC_W0i1Sh_i66s2gdzd-5DtJq-LCdvafnx-j4Zl6kmAnep1rkVBVDLlRG5wIozQQpsK2YZt4JZU9msAiMMhkwzyDVs8oJkmAthuYFsiB5Pe1vvvo4mdHIbn2ziSYnzghckbhORghOlvQvBGytbXx-U_5UYZO9PRn-y9yfP_mLk4RSpjTH_OI8iBSXZHyira7A</recordid><startdate>20150715</startdate><enddate>20150715</enddate><creator>Forero, Pedro A.</creator><creator>Baxley, Paul A.</creator><creator>Straatemeier, Logan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150715</creationdate><title>A Multitask Learning Framework for Broadband Source-Location Mapping Using Passive Sonar</title><author>Forero, Pedro A. ; Baxley, Paul A. ; Straatemeier, Logan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-cc6f9804f7ae9691a759281fd5f57f95fedf3d0e9e103c506c0b68231799f7e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustic measurements</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Arrays</topic><topic>Block coordinate descent</topic><topic>Broadband communication</topic><topic>Frequency measurement</topic><topic>group sparsity</topic><topic>multitask learning</topic><topic>Position measurement</topic><topic>Signal processing algorithms</topic><topic>underwater source localization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forero, Pedro A.</creatorcontrib><creatorcontrib>Baxley, Paul A.</creatorcontrib><creatorcontrib>Straatemeier, Logan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Forero, Pedro A.</au><au>Baxley, Paul A.</au><au>Straatemeier, Logan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multitask Learning Framework for Broadband Source-Location Mapping Using Passive Sonar</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-07-15</date><risdate>2015</risdate><volume>63</volume><issue>14</issue><spage>3599</spage><epage>3614</epage><pages>3599-3614</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Underwater source localization via passive sonar is a challenging task due to the dynamic and complex nature of the acoustic environment. Different from approaches based on matched-field processing, this work explores broadband underwater source localization within a multitask learning (MTL) framework. Here, each task refers to a robust signal approximation problem over a single frequency. MTL provides a natural framework for exchanging information across the narrowband signal-approximation problems and constructing an aggregate (across frequencies) source-localization map. Efficient algorithms based on block coordinate descent (BCD) are developed for solving the source-localization problem. Complex-valued predictor screening rules for reducing the computational complexity of the algorithm are also developed. These rules discard map locations from the set of possible source locations prior to using BCD. They reduce the computational complexity of the localization algorithm without compromising the localization results. Tests of these approaches on synthetic and real data for the SWellEX-3 environment compare the performance of the proposed algorithm to that of alternative methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2015.2432747</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2015-07, Vol.63 (14), p.3599-3614
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2015_2432747
source IEEE Electronic Library (IEL)
subjects Acoustic measurements
Acoustics
Algorithms
Arrays
Block coordinate descent
Broadband communication
Frequency measurement
group sparsity
multitask learning
Position measurement
Signal processing algorithms
underwater source localization
title A Multitask Learning Framework for Broadband Source-Location Mapping Using Passive Sonar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multitask%20Learning%20Framework%20for%20Broadband%20Source-Location%20Mapping%20Using%20Passive%20Sonar&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Forero,%20Pedro%20A.&rft.date=2015-07-15&rft.volume=63&rft.issue=14&rft.spage=3599&rft.epage=3614&rft.pages=3599-3614&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2432747&rft_dat=%3Cproquest_RIE%3E3713731071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1687822819&rft_id=info:pmid/&rft_ieee_id=7105942&rfr_iscdi=true