Causal Recursive Parameter Estimation for Discrete-Time Hidden Bivariate Markov Chains

An algorithm for causal recursive parameter estimation of a discrete-time hidden bivariate Markov chain is developed. In this model, a discrete-time bivariate Markov chain is observed through a discrete-time memoryless channel. The algorithm relies on the EM-based recursive approach developed by Sti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2015-04, Vol.63 (8), p.2108-2117
Hauptverfasser: Ephraim, Yariv, Mark, Brian L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2117
container_issue 8
container_start_page 2108
container_title IEEE transactions on signal processing
container_volume 63
creator Ephraim, Yariv
Mark, Brian L.
description An algorithm for causal recursive parameter estimation of a discrete-time hidden bivariate Markov chain is developed. In this model, a discrete-time bivariate Markov chain is observed through a discrete-time memoryless channel. The algorithm relies on the EM-based recursive approach developed by Stiller and Radons for hidden Markov models. A distinct advantage of the discrete-time hidden bivariate Markov chain model is that the sojourn time distribution of its observable process in each state is phase-type rather than geometric as in the hidden Markov model. Phase-type distributions can approximate any desired sojourn time distribution. Particular phase-type distributions include mixtures and convolutions of geometric distributions. The parameter estimation algorithm requires causal recursive estimation of the relevant statistics in each EM step. These statistics include the number of jumps of the bivariate Markov chain from one state to another, including self transitions, in the given observation interval, and first- and second-order statistical averages of the observable process in each state when the memoryless channel is Gaussian. We develop the explicit recursions and demonstrate the performance of the algorithm in estimating the model's parameter and its sojourn time distribution in a numerical example.
doi_str_mv 10.1109/TSP.2015.2408557
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2015_2408557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7054561</ieee_id><sourcerecordid>10_1109_TSP_2015_2408557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-30c43b493fd909f81bbf22fcbefd1a7355a1dd503652bc25d846c7e70e826d893</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpf9A6mzX9nkqLFaoWLRKt7CZncWV9tGdtOA_96UFk_vwDvPMDyEXDKYMAbl9fJ1MeHA1IRLKJTSR2TESskykDo_HmZQIlOF_jglZyl9ATApy3xE3iuzTWZFX9BuYwo90oWJZo0dRjpNXVibLrQb6ttI70KycSiyZVgjnQXncENvQ29iMB3SJxO_255WnyZs0jk58WaV8OKQY_J2P11Ws2z-_PBY3cwzK0B1mQArRSNL4V0JpS9Y03jOvW3QO2a0UMow5xSIXPHGcuUKmVuNGrDguStKMSawv2tjm1JEX__E4ef4WzOod17qwUu981IfvAzI1R4JiPi_rkFJlTPxBzNeX5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Causal Recursive Parameter Estimation for Discrete-Time Hidden Bivariate Markov Chains</title><source>IEEE Electronic Library (IEL)</source><creator>Ephraim, Yariv ; Mark, Brian L.</creator><creatorcontrib>Ephraim, Yariv ; Mark, Brian L.</creatorcontrib><description>An algorithm for causal recursive parameter estimation of a discrete-time hidden bivariate Markov chain is developed. In this model, a discrete-time bivariate Markov chain is observed through a discrete-time memoryless channel. The algorithm relies on the EM-based recursive approach developed by Stiller and Radons for hidden Markov models. A distinct advantage of the discrete-time hidden bivariate Markov chain model is that the sojourn time distribution of its observable process in each state is phase-type rather than geometric as in the hidden Markov model. Phase-type distributions can approximate any desired sojourn time distribution. Particular phase-type distributions include mixtures and convolutions of geometric distributions. The parameter estimation algorithm requires causal recursive estimation of the relevant statistics in each EM step. These statistics include the number of jumps of the bivariate Markov chain from one state to another, including self transitions, in the given observation interval, and first- and second-order statistical averages of the observable process in each state when the memoryless channel is Gaussian. We develop the explicit recursions and demonstrate the performance of the algorithm in estimating the model's parameter and its sojourn time distribution in a numerical example.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2015.2408557</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Hidden Markov models ; Markov processes ; Memoryless systems ; Parameter estimation ; Random variables ; recursive estimation ; Signal processing algorithms</subject><ispartof>IEEE transactions on signal processing, 2015-04, Vol.63 (8), p.2108-2117</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-30c43b493fd909f81bbf22fcbefd1a7355a1dd503652bc25d846c7e70e826d893</citedby><cites>FETCH-LOGICAL-c305t-30c43b493fd909f81bbf22fcbefd1a7355a1dd503652bc25d846c7e70e826d893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7054561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7054561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ephraim, Yariv</creatorcontrib><creatorcontrib>Mark, Brian L.</creatorcontrib><title>Causal Recursive Parameter Estimation for Discrete-Time Hidden Bivariate Markov Chains</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>An algorithm for causal recursive parameter estimation of a discrete-time hidden bivariate Markov chain is developed. In this model, a discrete-time bivariate Markov chain is observed through a discrete-time memoryless channel. The algorithm relies on the EM-based recursive approach developed by Stiller and Radons for hidden Markov models. A distinct advantage of the discrete-time hidden bivariate Markov chain model is that the sojourn time distribution of its observable process in each state is phase-type rather than geometric as in the hidden Markov model. Phase-type distributions can approximate any desired sojourn time distribution. Particular phase-type distributions include mixtures and convolutions of geometric distributions. The parameter estimation algorithm requires causal recursive estimation of the relevant statistics in each EM step. These statistics include the number of jumps of the bivariate Markov chain from one state to another, including self transitions, in the given observation interval, and first- and second-order statistical averages of the observable process in each state when the memoryless channel is Gaussian. We develop the explicit recursions and demonstrate the performance of the algorithm in estimating the model's parameter and its sojourn time distribution in a numerical example.</description><subject>Approximation algorithms</subject><subject>Hidden Markov models</subject><subject>Markov processes</subject><subject>Memoryless systems</subject><subject>Parameter estimation</subject><subject>Random variables</subject><subject>recursive estimation</subject><subject>Signal processing algorithms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpf9A6mzX9nkqLFaoWLRKt7CZncWV9tGdtOA_96UFk_vwDvPMDyEXDKYMAbl9fJ1MeHA1IRLKJTSR2TESskykDo_HmZQIlOF_jglZyl9ATApy3xE3iuzTWZFX9BuYwo90oWJZo0dRjpNXVibLrQb6ttI70KycSiyZVgjnQXncENvQ29iMB3SJxO_255WnyZs0jk58WaV8OKQY_J2P11Ws2z-_PBY3cwzK0B1mQArRSNL4V0JpS9Y03jOvW3QO2a0UMow5xSIXPHGcuUKmVuNGrDguStKMSawv2tjm1JEX__E4ef4WzOod17qwUu981IfvAzI1R4JiPi_rkFJlTPxBzNeX5Q</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Ephraim, Yariv</creator><creator>Mark, Brian L.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150415</creationdate><title>Causal Recursive Parameter Estimation for Discrete-Time Hidden Bivariate Markov Chains</title><author>Ephraim, Yariv ; Mark, Brian L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-30c43b493fd909f81bbf22fcbefd1a7355a1dd503652bc25d846c7e70e826d893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation algorithms</topic><topic>Hidden Markov models</topic><topic>Markov processes</topic><topic>Memoryless systems</topic><topic>Parameter estimation</topic><topic>Random variables</topic><topic>recursive estimation</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ephraim, Yariv</creatorcontrib><creatorcontrib>Mark, Brian L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ephraim, Yariv</au><au>Mark, Brian L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Causal Recursive Parameter Estimation for Discrete-Time Hidden Bivariate Markov Chains</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2015-04-15</date><risdate>2015</risdate><volume>63</volume><issue>8</issue><spage>2108</spage><epage>2117</epage><pages>2108-2117</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>An algorithm for causal recursive parameter estimation of a discrete-time hidden bivariate Markov chain is developed. In this model, a discrete-time bivariate Markov chain is observed through a discrete-time memoryless channel. The algorithm relies on the EM-based recursive approach developed by Stiller and Radons for hidden Markov models. A distinct advantage of the discrete-time hidden bivariate Markov chain model is that the sojourn time distribution of its observable process in each state is phase-type rather than geometric as in the hidden Markov model. Phase-type distributions can approximate any desired sojourn time distribution. Particular phase-type distributions include mixtures and convolutions of geometric distributions. The parameter estimation algorithm requires causal recursive estimation of the relevant statistics in each EM step. These statistics include the number of jumps of the bivariate Markov chain from one state to another, including self transitions, in the given observation interval, and first- and second-order statistical averages of the observable process in each state when the memoryless channel is Gaussian. We develop the explicit recursions and demonstrate the performance of the algorithm in estimating the model's parameter and its sojourn time distribution in a numerical example.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2015.2408557</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2015-04, Vol.63 (8), p.2108-2117
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2015_2408557
source IEEE Electronic Library (IEL)
subjects Approximation algorithms
Hidden Markov models
Markov processes
Memoryless systems
Parameter estimation
Random variables
recursive estimation
Signal processing algorithms
title Causal Recursive Parameter Estimation for Discrete-Time Hidden Bivariate Markov Chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Causal%20Recursive%20Parameter%20Estimation%20for%20Discrete-Time%20Hidden%20Bivariate%20Markov%20Chains&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ephraim,%20Yariv&rft.date=2015-04-15&rft.volume=63&rft.issue=8&rft.spage=2108&rft.epage=2117&rft.pages=2108-2117&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2015.2408557&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2015_2408557%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7054561&rfr_iscdi=true