The Stationary Phase Approximation, Time-Frequency Decomposition and Auditory Processing

The principle of stationary phase (PSP) is re-examined in the context of linear time-frequency (TF) decomposition using Gaussian, gammatone and gamma chirp filters at uniform, logarithmic and cochlear spacings in frequency. This necessitates consideration of the use the PSP on non-asymptotic integra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2014-01, Vol.62 (1), p.56-68
1. Verfasser: Mulgrew, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 56
container_title IEEE transactions on signal processing
container_volume 62
creator Mulgrew, Bernard
description The principle of stationary phase (PSP) is re-examined in the context of linear time-frequency (TF) decomposition using Gaussian, gammatone and gamma chirp filters at uniform, logarithmic and cochlear spacings in frequency. This necessitates consideration of the use the PSP on non-asymptotic integrals and leads to the introduction of a test for phase rate dominance. Regions of the TF plane that pass the test and do not contain stationary phase points contribute little or nothing to the final output. Analysis values that lie in these regions can thus be set to zero, i.e., sparsity. In regions of the TF plane that fail the test or are in the vicinity of stationary phase points, synthesis is performed in the usual way. A new interpretation of the location parameters associated with the synthesis filters leads to: i) a new method for locating stationary phase points in the TF plane and ii) a test for phase rate dominance in that plane. Together this is a TF stationary phase approximation (TFSPA) for both analysis and synthesis. The stationary phase regions of several elementary signals are identified theoretically and examples of reconstruction given. An analysis of the TF phase rate characteristics for the case of two simultaneous tones predicts and quantifies a form of simultaneous masking similar to that which characterizes the auditory system.
doi_str_mv 10.1109/TSP.2013.2284479
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2013_2284479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6620957</ieee_id><sourcerecordid>28203498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-76bdb55c854c884af1fce4f73e5d726fe27fb01cc7de7f71f3469116f6a3946a3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvgpdcvJm635s9ltqqULDQCL2F7WbWrrRJ3E3B_vcmtvQyM8x7v2F4CN0TPCIE6-d8uRhRTNiI0oxzpS_QgGhOUsyVvOxmLFgqMrW6RjcxfmNMONdygFb5BpJla1pfVyYcksXGREjGTRPqX7_7Xz8lud9BOgvws4fKHpIXsPWuqaPv1cRUZTLel76tezzUFmL01dctunJmG-Hu1IfoczbNJ2_p_OP1fTKep5Yx0aZKrsu1EDYT3GYZN444C9wpBqJUVDqgyq0xsVaVoJwijnGpCZFOGqZ5V4YIH-_aUMcYwBVN6B4Ph4Lgok-m6JIp-mSKUzId8nhEGhOt2bpgKuvjmaMZxYzrrPM9HH0eAM6ylBRrodgfJ_duHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Stationary Phase Approximation, Time-Frequency Decomposition and Auditory Processing</title><source>IEEE Electronic Library (IEL)</source><creator>Mulgrew, Bernard</creator><creatorcontrib>Mulgrew, Bernard</creatorcontrib><description>The principle of stationary phase (PSP) is re-examined in the context of linear time-frequency (TF) decomposition using Gaussian, gammatone and gamma chirp filters at uniform, logarithmic and cochlear spacings in frequency. This necessitates consideration of the use the PSP on non-asymptotic integrals and leads to the introduction of a test for phase rate dominance. Regions of the TF plane that pass the test and do not contain stationary phase points contribute little or nothing to the final output. Analysis values that lie in these regions can thus be set to zero, i.e., sparsity. In regions of the TF plane that fail the test or are in the vicinity of stationary phase points, synthesis is performed in the usual way. A new interpretation of the location parameters associated with the synthesis filters leads to: i) a new method for locating stationary phase points in the TF plane and ii) a test for phase rate dominance in that plane. Together this is a TF stationary phase approximation (TFSPA) for both analysis and synthesis. The stationary phase regions of several elementary signals are identified theoretically and examples of reconstruction given. An analysis of the TF phase rate characteristics for the case of two simultaneous tones predicts and quantifies a form of simultaneous masking similar to that which characterizes the auditory system.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2284479</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Approximation methods ; Auditory system ; Bandwidth ; Chirp ; cochlear filters ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Frequency response ; gammachirp ; gammatone ; Information, signal and communications theory ; Method of reassignment ; Prototypes ; Signal and communications theory ; Signal, noise ; simultaneous masking ; Telecommunications and information theory ; Time-frequency analysis</subject><ispartof>IEEE transactions on signal processing, 2014-01, Vol.62 (1), p.56-68</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-76bdb55c854c884af1fce4f73e5d726fe27fb01cc7de7f71f3469116f6a3946a3</citedby><cites>FETCH-LOGICAL-c335t-76bdb55c854c884af1fce4f73e5d726fe27fb01cc7de7f71f3469116f6a3946a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6620957$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28203498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mulgrew, Bernard</creatorcontrib><title>The Stationary Phase Approximation, Time-Frequency Decomposition and Auditory Processing</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The principle of stationary phase (PSP) is re-examined in the context of linear time-frequency (TF) decomposition using Gaussian, gammatone and gamma chirp filters at uniform, logarithmic and cochlear spacings in frequency. This necessitates consideration of the use the PSP on non-asymptotic integrals and leads to the introduction of a test for phase rate dominance. Regions of the TF plane that pass the test and do not contain stationary phase points contribute little or nothing to the final output. Analysis values that lie in these regions can thus be set to zero, i.e., sparsity. In regions of the TF plane that fail the test or are in the vicinity of stationary phase points, synthesis is performed in the usual way. A new interpretation of the location parameters associated with the synthesis filters leads to: i) a new method for locating stationary phase points in the TF plane and ii) a test for phase rate dominance in that plane. Together this is a TF stationary phase approximation (TFSPA) for both analysis and synthesis. The stationary phase regions of several elementary signals are identified theoretically and examples of reconstruction given. An analysis of the TF phase rate characteristics for the case of two simultaneous tones predicts and quantifies a form of simultaneous masking similar to that which characterizes the auditory system.</description><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Auditory system</subject><subject>Bandwidth</subject><subject>Chirp</subject><subject>cochlear filters</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Frequency response</subject><subject>gammachirp</subject><subject>gammatone</subject><subject>Information, signal and communications theory</subject><subject>Method of reassignment</subject><subject>Prototypes</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>simultaneous masking</subject><subject>Telecommunications and information theory</subject><subject>Time-frequency analysis</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvgpdcvJm635s9ltqqULDQCL2F7WbWrrRJ3E3B_vcmtvQyM8x7v2F4CN0TPCIE6-d8uRhRTNiI0oxzpS_QgGhOUsyVvOxmLFgqMrW6RjcxfmNMONdygFb5BpJla1pfVyYcksXGREjGTRPqX7_7Xz8lud9BOgvws4fKHpIXsPWuqaPv1cRUZTLel76tezzUFmL01dctunJmG-Hu1IfoczbNJ2_p_OP1fTKep5Yx0aZKrsu1EDYT3GYZN444C9wpBqJUVDqgyq0xsVaVoJwijnGpCZFOGqZ5V4YIH-_aUMcYwBVN6B4Ph4Lgok-m6JIp-mSKUzId8nhEGhOt2bpgKuvjmaMZxYzrrPM9HH0eAM6ylBRrodgfJ_duHQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Mulgrew, Bernard</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>The Stationary Phase Approximation, Time-Frequency Decomposition and Auditory Processing</title><author>Mulgrew, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-76bdb55c854c884af1fce4f73e5d726fe27fb01cc7de7f71f3469116f6a3946a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Auditory system</topic><topic>Bandwidth</topic><topic>Chirp</topic><topic>cochlear filters</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Frequency response</topic><topic>gammachirp</topic><topic>gammatone</topic><topic>Information, signal and communications theory</topic><topic>Method of reassignment</topic><topic>Prototypes</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>simultaneous masking</topic><topic>Telecommunications and information theory</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mulgrew, Bernard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mulgrew, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Stationary Phase Approximation, Time-Frequency Decomposition and Auditory Processing</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2014-01-01</date><risdate>2014</risdate><volume>62</volume><issue>1</issue><spage>56</spage><epage>68</epage><pages>56-68</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The principle of stationary phase (PSP) is re-examined in the context of linear time-frequency (TF) decomposition using Gaussian, gammatone and gamma chirp filters at uniform, logarithmic and cochlear spacings in frequency. This necessitates consideration of the use the PSP on non-asymptotic integrals and leads to the introduction of a test for phase rate dominance. Regions of the TF plane that pass the test and do not contain stationary phase points contribute little or nothing to the final output. Analysis values that lie in these regions can thus be set to zero, i.e., sparsity. In regions of the TF plane that fail the test or are in the vicinity of stationary phase points, synthesis is performed in the usual way. A new interpretation of the location parameters associated with the synthesis filters leads to: i) a new method for locating stationary phase points in the TF plane and ii) a test for phase rate dominance in that plane. Together this is a TF stationary phase approximation (TFSPA) for both analysis and synthesis. The stationary phase regions of several elementary signals are identified theoretically and examples of reconstruction given. An analysis of the TF phase rate characteristics for the case of two simultaneous tones predicts and quantifies a form of simultaneous masking similar to that which characterizes the auditory system.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2284479</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2014-01, Vol.62 (1), p.56-68
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2013_2284479
source IEEE Electronic Library (IEL)
subjects Applied sciences
Approximation methods
Auditory system
Bandwidth
Chirp
cochlear filters
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Frequency response
gammachirp
gammatone
Information, signal and communications theory
Method of reassignment
Prototypes
Signal and communications theory
Signal, noise
simultaneous masking
Telecommunications and information theory
Time-frequency analysis
title The Stationary Phase Approximation, Time-Frequency Decomposition and Auditory Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Stationary%20Phase%20Approximation,%20Time-Frequency%20Decomposition%20and%20Auditory%20Processing&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Mulgrew,%20Bernard&rft.date=2014-01-01&rft.volume=62&rft.issue=1&rft.spage=56&rft.epage=68&rft.pages=56-68&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2284479&rft_dat=%3Cpascalfrancis_cross%3E28203498%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6620957&rfr_iscdi=true