The Effect of Correlated Observations on the Performance of Distributed Estimation

Estimating unknown signal in Wireless Sensor Networks (WSNs) requires sensor nodes to transmit their observations of the signal over a multiple access channel to a Fusion Center (FC). The FC uses the received observations, which is corrupted by observation noise and both channel fading and noise, to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2013-12, Vol.61 (24), p.6264-6275
Hauptverfasser: Ahmed, Mohammed F. A., Al-Naffouri, Tareq Y., Alouini, Mohamed-Slim, Turkiyyah, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6275
container_issue 24
container_start_page 6264
container_title IEEE transactions on signal processing
container_volume 61
creator Ahmed, Mohammed F. A.
Al-Naffouri, Tareq Y.
Alouini, Mohamed-Slim
Turkiyyah, George
description Estimating unknown signal in Wireless Sensor Networks (WSNs) requires sensor nodes to transmit their observations of the signal over a multiple access channel to a Fusion Center (FC). The FC uses the received observations, which is corrupted by observation noise and both channel fading and noise, to find the minimum Mean Square Error (MSE) estimate of the signal. In this paper, we investigate the effect of the source-node correlation (the correlation between sensor node observations and the source signal) and the inter-node correlation (the correlation between sensor node observations) on the performance of the Linear Minimum Mean Square Error (LMMSE) estimator for three correlation models in the presence of channel fading. First, we investigate the asymptotic behavior of the achieved distortion (i.e., MSE) resulting from both the observation and channel noise in a non-fading channel. Then, the effect of channel fading is considered and the corresponding distortion outage probability, the probability that the distortion exceeds a certain value, is found. By representing the distortion as a ratio of indefinite quadratic forms, a closed-form expression is derived for the outage probability that shows its dependency on the correlation. Finally, the new representation of the outage probability allows us to propose an iterative solution for the power allocation problem to minimize the outage probability under total and individual power constraints. Numerical simulations are provided to verify our analytic results.
doi_str_mv 10.1109/TSP.2013.2283841
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2013_2283841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6613518</ieee_id><sourcerecordid>28150193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fdd8acf8a7e7ff728671e13c3fb6944ae4d9aabbfc06a1aa0b01debabc7b4f553</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wctePG7NbLJJ9ii1fkChRSt4WybZCa603ZKsgv_erC09zcA87zDzMHYNfALAq7vV23JScBCTojDCSDhhI6gk5FxqdZp6Xoq8NPrjnF3E-MU5SFmpEXtdfVI2855cn3U-m3Yh0Bp7arKFjRR-sG-7bcy6bdYncEnBd2GDW0cD_dDGPrT2e8BnsW83__QlO_O4jnR1qGP2_jhbTZ_z-eLpZXo_z11RiT73TWPQeYOatPe6MEoDgXDCW1VJiSSbCtFa77hCQOSWQ0MWrdNW-rIUY8b3e13oYgzk611IJ4TfGng9OKmTk3pwUh-cpMjtPrLD6HDtQ_qkjcdcYaDkUInE3ey5loiOY6VAlGDEH2rlbMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Effect of Correlated Observations on the Performance of Distributed Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Ahmed, Mohammed F. A. ; Al-Naffouri, Tareq Y. ; Alouini, Mohamed-Slim ; Turkiyyah, George</creator><creatorcontrib>Ahmed, Mohammed F. A. ; Al-Naffouri, Tareq Y. ; Alouini, Mohamed-Slim ; Turkiyyah, George</creatorcontrib><description>Estimating unknown signal in Wireless Sensor Networks (WSNs) requires sensor nodes to transmit their observations of the signal over a multiple access channel to a Fusion Center (FC). The FC uses the received observations, which is corrupted by observation noise and both channel fading and noise, to find the minimum Mean Square Error (MSE) estimate of the signal. In this paper, we investigate the effect of the source-node correlation (the correlation between sensor node observations and the source signal) and the inter-node correlation (the correlation between sensor node observations) on the performance of the Linear Minimum Mean Square Error (LMMSE) estimator for three correlation models in the presence of channel fading. First, we investigate the asymptotic behavior of the achieved distortion (i.e., MSE) resulting from both the observation and channel noise in a non-fading channel. Then, the effect of channel fading is considered and the corresponding distortion outage probability, the probability that the distortion exceeds a certain value, is found. By representing the distortion as a ratio of indefinite quadratic forms, a closed-form expression is derived for the outage probability that shows its dependency on the correlation. Finally, the new representation of the outage probability allows us to propose an iterative solution for the power allocation problem to minimize the outage probability under total and individual power constraints. Numerical simulations are provided to verify our analytic results.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2283841</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Correlation ; Detection, estimation, filtering, equalization, prediction ; Distributed estimation ; Educational institutions ; Estimation ; Exact sciences and technology ; Fading ; fading channels ; Information, signal and communications theory ; Noise ; outage probability ; Resource management ; Signal and communications theory ; signal correlation ; Signal, noise ; Telecommunications and information theory ; Wireless sensor networks</subject><ispartof>IEEE transactions on signal processing, 2013-12, Vol.61 (24), p.6264-6275</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fdd8acf8a7e7ff728671e13c3fb6944ae4d9aabbfc06a1aa0b01debabc7b4f553</citedby><cites>FETCH-LOGICAL-c293t-fdd8acf8a7e7ff728671e13c3fb6944ae4d9aabbfc06a1aa0b01debabc7b4f553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6613518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6613518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28150193$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Mohammed F. A.</creatorcontrib><creatorcontrib>Al-Naffouri, Tareq Y.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><creatorcontrib>Turkiyyah, George</creatorcontrib><title>The Effect of Correlated Observations on the Performance of Distributed Estimation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Estimating unknown signal in Wireless Sensor Networks (WSNs) requires sensor nodes to transmit their observations of the signal over a multiple access channel to a Fusion Center (FC). The FC uses the received observations, which is corrupted by observation noise and both channel fading and noise, to find the minimum Mean Square Error (MSE) estimate of the signal. In this paper, we investigate the effect of the source-node correlation (the correlation between sensor node observations and the source signal) and the inter-node correlation (the correlation between sensor node observations) on the performance of the Linear Minimum Mean Square Error (LMMSE) estimator for three correlation models in the presence of channel fading. First, we investigate the asymptotic behavior of the achieved distortion (i.e., MSE) resulting from both the observation and channel noise in a non-fading channel. Then, the effect of channel fading is considered and the corresponding distortion outage probability, the probability that the distortion exceeds a certain value, is found. By representing the distortion as a ratio of indefinite quadratic forms, a closed-form expression is derived for the outage probability that shows its dependency on the correlation. Finally, the new representation of the outage probability allows us to propose an iterative solution for the power allocation problem to minimize the outage probability under total and individual power constraints. Numerical simulations are provided to verify our analytic results.</description><subject>Applied sciences</subject><subject>Correlation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Distributed estimation</subject><subject>Educational institutions</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Fading</subject><subject>fading channels</subject><subject>Information, signal and communications theory</subject><subject>Noise</subject><subject>outage probability</subject><subject>Resource management</subject><subject>Signal and communications theory</subject><subject>signal correlation</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Wireless sensor networks</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wctePG7NbLJJ9ii1fkChRSt4WybZCa603ZKsgv_erC09zcA87zDzMHYNfALAq7vV23JScBCTojDCSDhhI6gk5FxqdZp6Xoq8NPrjnF3E-MU5SFmpEXtdfVI2855cn3U-m3Yh0Bp7arKFjRR-sG-7bcy6bdYncEnBd2GDW0cD_dDGPrT2e8BnsW83__QlO_O4jnR1qGP2_jhbTZ_z-eLpZXo_z11RiT73TWPQeYOatPe6MEoDgXDCW1VJiSSbCtFa77hCQOSWQ0MWrdNW-rIUY8b3e13oYgzk611IJ4TfGng9OKmTk3pwUh-cpMjtPrLD6HDtQ_qkjcdcYaDkUInE3ey5loiOY6VAlGDEH2rlbMw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Ahmed, Mohammed F. A.</creator><creator>Al-Naffouri, Tareq Y.</creator><creator>Alouini, Mohamed-Slim</creator><creator>Turkiyyah, George</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131201</creationdate><title>The Effect of Correlated Observations on the Performance of Distributed Estimation</title><author>Ahmed, Mohammed F. A. ; Al-Naffouri, Tareq Y. ; Alouini, Mohamed-Slim ; Turkiyyah, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fdd8acf8a7e7ff728671e13c3fb6944ae4d9aabbfc06a1aa0b01debabc7b4f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Correlation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Distributed estimation</topic><topic>Educational institutions</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Fading</topic><topic>fading channels</topic><topic>Information, signal and communications theory</topic><topic>Noise</topic><topic>outage probability</topic><topic>Resource management</topic><topic>Signal and communications theory</topic><topic>signal correlation</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Mohammed F. A.</creatorcontrib><creatorcontrib>Al-Naffouri, Tareq Y.</creatorcontrib><creatorcontrib>Alouini, Mohamed-Slim</creatorcontrib><creatorcontrib>Turkiyyah, George</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmed, Mohammed F. A.</au><au>Al-Naffouri, Tareq Y.</au><au>Alouini, Mohamed-Slim</au><au>Turkiyyah, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Correlated Observations on the Performance of Distributed Estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>61</volume><issue>24</issue><spage>6264</spage><epage>6275</epage><pages>6264-6275</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Estimating unknown signal in Wireless Sensor Networks (WSNs) requires sensor nodes to transmit their observations of the signal over a multiple access channel to a Fusion Center (FC). The FC uses the received observations, which is corrupted by observation noise and both channel fading and noise, to find the minimum Mean Square Error (MSE) estimate of the signal. In this paper, we investigate the effect of the source-node correlation (the correlation between sensor node observations and the source signal) and the inter-node correlation (the correlation between sensor node observations) on the performance of the Linear Minimum Mean Square Error (LMMSE) estimator for three correlation models in the presence of channel fading. First, we investigate the asymptotic behavior of the achieved distortion (i.e., MSE) resulting from both the observation and channel noise in a non-fading channel. Then, the effect of channel fading is considered and the corresponding distortion outage probability, the probability that the distortion exceeds a certain value, is found. By representing the distortion as a ratio of indefinite quadratic forms, a closed-form expression is derived for the outage probability that shows its dependency on the correlation. Finally, the new representation of the outage probability allows us to propose an iterative solution for the power allocation problem to minimize the outage probability under total and individual power constraints. Numerical simulations are provided to verify our analytic results.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2283841</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2013-12, Vol.61 (24), p.6264-6275
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2013_2283841
source IEEE Electronic Library (IEL)
subjects Applied sciences
Correlation
Detection, estimation, filtering, equalization, prediction
Distributed estimation
Educational institutions
Estimation
Exact sciences and technology
Fading
fading channels
Information, signal and communications theory
Noise
outage probability
Resource management
Signal and communications theory
signal correlation
Signal, noise
Telecommunications and information theory
Wireless sensor networks
title The Effect of Correlated Observations on the Performance of Distributed Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Correlated%20Observations%20on%20the%20Performance%20of%20Distributed%20Estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ahmed,%20Mohammed%20F.%20A.&rft.date=2013-12-01&rft.volume=61&rft.issue=24&rft.spage=6264&rft.epage=6275&rft.pages=6264-6275&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2283841&rft_dat=%3Cpascalfrancis_RIE%3E28150193%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6613518&rfr_iscdi=true