Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC
The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The ex...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2013-12, Vol.61 (23), p.6103-6117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6117 |
---|---|
container_issue | 23 |
container_start_page | 6103 |
container_title | IEEE transactions on signal processing |
container_volume | 61 |
creator | Khabbazibasmenj, Arash Vorobyov, Sergiy A. |
description | The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here, we aim at finding the globally optimal solution for the non-convex DC problem and clarify the conditions under which the solution is guaranteed to be globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function (OVF). Then, the OVF is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional OVF is minimized iteratively via polynomial time DC (POTDC) algorithm. We show that the POTDC converges to a point that satisfies Karush-Kuhn-Tucker (KKT) optimality conditions, and such point is the global optimum under certain conditions. Towards this conclusion, we prove that the proposed algorithm finds the globally optimal solution if the presumed norm of the mismatch matrix that corresponds to the desired signal covariance matrix is sufficiently small. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods. |
doi_str_mv | 10.1109/TSP.2013.2281301 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2013_2281301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6595122</ieee_id><sourcerecordid>3170227971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f90ee022045c672af676d283169d298f73cc176d77cbc43a4256ee8e578fbe093</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxTdGExG9m3hpYjwudtrddveooGiCgQBGb5vSnWJxP7BdSPzvXYRwepOZ33uZvCC4BtoDoOn9fDbpMQq8x1gCnMJJ0IE0gpBGUpy2M415GCfy8zy48H5FKURRKjrBalovNr4hD7laN3aL5BFVaWpX2mpJWiVDrNCpIpyq6pvM7LJSBXmrcyzIh22-yKT29t83w9KGAzS2sg2Sfl35xilbNWRrFZmM54P-ZXBmVOHx6qDd4P35ad5_CUfj4Wv_YRRqLngTmpQiUsZoFGshmTJCipwlHESaszQxkmsN7UpKvdARVxGLBWKCsUzMAmnKu8HtPnft6p8N-iZb1RvX_u0ziCTnAMBlS9E9pV3tvUOTrZ0tlfvNgGa7RrO20WzXaHZotLXcHYKV16owTlXa-qOvpWIKyY672XMWEY9nEacxMMb_AD6HffE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473311137</pqid></control><display><type>article</type><title>Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC</title><source>IEEE Electronic Library (IEL)</source><creator>Khabbazibasmenj, Arash ; Vorobyov, Sergiy A.</creator><creatorcontrib>Khabbazibasmenj, Arash ; Vorobyov, Sergiy A.</creatorcontrib><description>The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here, we aim at finding the globally optimal solution for the non-convex DC problem and clarify the conditions under which the solution is guaranteed to be globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function (OVF). Then, the OVF is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional OVF is minimized iteratively via polynomial time DC (POTDC) algorithm. We show that the POTDC converges to a point that satisfies Karush-Kuhn-Tucker (KKT) optimality conditions, and such point is the global optimum under certain conditions. Towards this conclusion, we prove that the proposed algorithm finds the globally optimal solution if the presumed norm of the mismatch matrix that corresponds to the desired signal covariance matrix is sufficiently small. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2281301</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Array signal processing ; Covariance matrices ; Detection, estimation, filtering, equalization, prediction ; Difference-of-convex functions (DC) programming ; Exact sciences and technology ; general-rank signal model ; Heuristic ; Information, signal and communications theory ; Member and Geographic Activities Board committees ; non-convex programming ; Operations research ; Optimization ; polynomial time DC (POTDC) ; robust adaptive beamforming ; Robustness ; semi-definite programming relaxation ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on signal processing, 2013-12, Vol.61 (23), p.6103-6117</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f90ee022045c672af676d283169d298f73cc176d77cbc43a4256ee8e578fbe093</citedby><cites>FETCH-LOGICAL-c363t-f90ee022045c672af676d283169d298f73cc176d77cbc43a4256ee8e578fbe093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6595122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6595122$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28150181$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khabbazibasmenj, Arash</creatorcontrib><creatorcontrib>Vorobyov, Sergiy A.</creatorcontrib><title>Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here, we aim at finding the globally optimal solution for the non-convex DC problem and clarify the conditions under which the solution is guaranteed to be globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function (OVF). Then, the OVF is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional OVF is minimized iteratively via polynomial time DC (POTDC) algorithm. We show that the POTDC converges to a point that satisfies Karush-Kuhn-Tucker (KKT) optimality conditions, and such point is the global optimum under certain conditions. Towards this conclusion, we prove that the proposed algorithm finds the globally optimal solution if the presumed norm of the mismatch matrix that corresponds to the desired signal covariance matrix is sufficiently small. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Covariance matrices</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Difference-of-convex functions (DC) programming</subject><subject>Exact sciences and technology</subject><subject>general-rank signal model</subject><subject>Heuristic</subject><subject>Information, signal and communications theory</subject><subject>Member and Geographic Activities Board committees</subject><subject>non-convex programming</subject><subject>Operations research</subject><subject>Optimization</subject><subject>polynomial time DC (POTDC)</subject><subject>robust adaptive beamforming</subject><subject>Robustness</subject><subject>semi-definite programming relaxation</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PAjEQxTdGExG9m3hpYjwudtrddveooGiCgQBGb5vSnWJxP7BdSPzvXYRwepOZ33uZvCC4BtoDoOn9fDbpMQq8x1gCnMJJ0IE0gpBGUpy2M415GCfy8zy48H5FKURRKjrBalovNr4hD7laN3aL5BFVaWpX2mpJWiVDrNCpIpyq6pvM7LJSBXmrcyzIh22-yKT29t83w9KGAzS2sg2Sfl35xilbNWRrFZmM54P-ZXBmVOHx6qDd4P35ad5_CUfj4Wv_YRRqLngTmpQiUsZoFGshmTJCipwlHESaszQxkmsN7UpKvdARVxGLBWKCsUzMAmnKu8HtPnft6p8N-iZb1RvX_u0ziCTnAMBlS9E9pV3tvUOTrZ0tlfvNgGa7RrO20WzXaHZotLXcHYKV16owTlXa-qOvpWIKyY672XMWEY9nEacxMMb_AD6HffE</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Khabbazibasmenj, Arash</creator><creator>Vorobyov, Sergiy A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC</title><author>Khabbazibasmenj, Arash ; Vorobyov, Sergiy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f90ee022045c672af676d283169d298f73cc176d77cbc43a4256ee8e578fbe093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Covariance matrices</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Difference-of-convex functions (DC) programming</topic><topic>Exact sciences and technology</topic><topic>general-rank signal model</topic><topic>Heuristic</topic><topic>Information, signal and communications theory</topic><topic>Member and Geographic Activities Board committees</topic><topic>non-convex programming</topic><topic>Operations research</topic><topic>Optimization</topic><topic>polynomial time DC (POTDC)</topic><topic>robust adaptive beamforming</topic><topic>Robustness</topic><topic>semi-definite programming relaxation</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khabbazibasmenj, Arash</creatorcontrib><creatorcontrib>Vorobyov, Sergiy A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khabbazibasmenj, Arash</au><au>Vorobyov, Sergiy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>61</volume><issue>23</issue><spage>6103</spage><epage>6117</epage><pages>6103-6117</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here, we aim at finding the globally optimal solution for the non-convex DC problem and clarify the conditions under which the solution is guaranteed to be globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function (OVF). Then, the OVF is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional OVF is minimized iteratively via polynomial time DC (POTDC) algorithm. We show that the POTDC converges to a point that satisfies Karush-Kuhn-Tucker (KKT) optimality conditions, and such point is the global optimum under certain conditions. Towards this conclusion, we prove that the proposed algorithm finds the globally optimal solution if the presumed norm of the mismatch matrix that corresponds to the desired signal covariance matrix is sufficiently small. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2281301</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2013-12, Vol.61 (23), p.6103-6117 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2013_2281301 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Array signal processing Covariance matrices Detection, estimation, filtering, equalization, prediction Difference-of-convex functions (DC) programming Exact sciences and technology general-rank signal model Heuristic Information, signal and communications theory Member and Geographic Activities Board committees non-convex programming Operations research Optimization polynomial time DC (POTDC) robust adaptive beamforming Robustness semi-definite programming relaxation Signal and communications theory Signal to noise ratio Signal, noise Telecommunications and information theory Vectors |
title | Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Adaptive%20Beamforming%20for%20General-Rank%20Signal%20Model%20With%20Positive%20Semi-Definite%20Constraint%20via%20POTDC&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Khabbazibasmenj,%20Arash&rft.date=2013-12-01&rft.volume=61&rft.issue=23&rft.spage=6103&rft.epage=6117&rft.pages=6103-6117&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2281301&rft_dat=%3Cproquest_RIE%3E3170227971%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1473311137&rft_id=info:pmid/&rft_ieee_id=6595122&rfr_iscdi=true |