Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC

The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2013-12, Vol.61 (23), p.6103-6117
Hauptverfasser: Khabbazibasmenj, Arash, Vorobyov, Sergiy A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6117
container_issue 23
container_start_page 6103
container_title IEEE transactions on signal processing
container_volume 61
creator Khabbazibasmenj, Arash
Vorobyov, Sergiy A.
description The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here, we aim at finding the globally optimal solution for the non-convex DC problem and clarify the conditions under which the solution is guaranteed to be globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function (OVF). Then, the OVF is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional OVF is minimized iteratively via polynomial time DC (POTDC) algorithm. We show that the POTDC converges to a point that satisfies Karush-Kuhn-Tucker (KKT) optimality conditions, and such point is the global optimum under certain conditions. Towards this conclusion, we prove that the proposed algorithm finds the globally optimal solution if the presumed norm of the mismatch matrix that corresponds to the desired signal covariance matrix is sufficiently small. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods.
doi_str_mv 10.1109/TSP.2013.2281301
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2013_2281301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6595122</ieee_id><sourcerecordid>3170227971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f90ee022045c672af676d283169d298f73cc176d77cbc43a4256ee8e578fbe093</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxTdGExG9m3hpYjwudtrddveooGiCgQBGb5vSnWJxP7BdSPzvXYRwepOZ33uZvCC4BtoDoOn9fDbpMQq8x1gCnMJJ0IE0gpBGUpy2M415GCfy8zy48H5FKURRKjrBalovNr4hD7laN3aL5BFVaWpX2mpJWiVDrNCpIpyq6pvM7LJSBXmrcyzIh22-yKT29t83w9KGAzS2sg2Sfl35xilbNWRrFZmM54P-ZXBmVOHx6qDd4P35ad5_CUfj4Wv_YRRqLngTmpQiUsZoFGshmTJCipwlHESaszQxkmsN7UpKvdARVxGLBWKCsUzMAmnKu8HtPnft6p8N-iZb1RvX_u0ziCTnAMBlS9E9pV3tvUOTrZ0tlfvNgGa7RrO20WzXaHZotLXcHYKV16owTlXa-qOvpWIKyY672XMWEY9nEacxMMb_AD6HffE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1473311137</pqid></control><display><type>article</type><title>Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC</title><source>IEEE Electronic Library (IEL)</source><creator>Khabbazibasmenj, Arash ; Vorobyov, Sergiy A.</creator><creatorcontrib>Khabbazibasmenj, Arash ; Vorobyov, Sergiy A.</creatorcontrib><description>The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here, we aim at finding the globally optimal solution for the non-convex DC problem and clarify the conditions under which the solution is guaranteed to be globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function (OVF). Then, the OVF is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional OVF is minimized iteratively via polynomial time DC (POTDC) algorithm. We show that the POTDC converges to a point that satisfies Karush-Kuhn-Tucker (KKT) optimality conditions, and such point is the global optimum under certain conditions. Towards this conclusion, we prove that the proposed algorithm finds the globally optimal solution if the presumed norm of the mismatch matrix that corresponds to the desired signal covariance matrix is sufficiently small. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2013.2281301</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Array signal processing ; Covariance matrices ; Detection, estimation, filtering, equalization, prediction ; Difference-of-convex functions (DC) programming ; Exact sciences and technology ; general-rank signal model ; Heuristic ; Information, signal and communications theory ; Member and Geographic Activities Board committees ; non-convex programming ; Operations research ; Optimization ; polynomial time DC (POTDC) ; robust adaptive beamforming ; Robustness ; semi-definite programming relaxation ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on signal processing, 2013-12, Vol.61 (23), p.6103-6117</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f90ee022045c672af676d283169d298f73cc176d77cbc43a4256ee8e578fbe093</citedby><cites>FETCH-LOGICAL-c363t-f90ee022045c672af676d283169d298f73cc176d77cbc43a4256ee8e578fbe093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6595122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6595122$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28150181$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khabbazibasmenj, Arash</creatorcontrib><creatorcontrib>Vorobyov, Sergiy A.</creatorcontrib><title>Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here, we aim at finding the globally optimal solution for the non-convex DC problem and clarify the conditions under which the solution is guaranteed to be globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function (OVF). Then, the OVF is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional OVF is minimized iteratively via polynomial time DC (POTDC) algorithm. We show that the POTDC converges to a point that satisfies Karush-Kuhn-Tucker (KKT) optimality conditions, and such point is the global optimum under certain conditions. Towards this conclusion, we prove that the proposed algorithm finds the globally optimal solution if the presumed norm of the mismatch matrix that corresponds to the desired signal covariance matrix is sufficiently small. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Covariance matrices</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Difference-of-convex functions (DC) programming</subject><subject>Exact sciences and technology</subject><subject>general-rank signal model</subject><subject>Heuristic</subject><subject>Information, signal and communications theory</subject><subject>Member and Geographic Activities Board committees</subject><subject>non-convex programming</subject><subject>Operations research</subject><subject>Optimization</subject><subject>polynomial time DC (POTDC)</subject><subject>robust adaptive beamforming</subject><subject>Robustness</subject><subject>semi-definite programming relaxation</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PAjEQxTdGExG9m3hpYjwudtrddveooGiCgQBGb5vSnWJxP7BdSPzvXYRwepOZ33uZvCC4BtoDoOn9fDbpMQq8x1gCnMJJ0IE0gpBGUpy2M415GCfy8zy48H5FKURRKjrBalovNr4hD7laN3aL5BFVaWpX2mpJWiVDrNCpIpyq6pvM7LJSBXmrcyzIh22-yKT29t83w9KGAzS2sg2Sfl35xilbNWRrFZmM54P-ZXBmVOHx6qDd4P35ad5_CUfj4Wv_YRRqLngTmpQiUsZoFGshmTJCipwlHESaszQxkmsN7UpKvdARVxGLBWKCsUzMAmnKu8HtPnft6p8N-iZb1RvX_u0ziCTnAMBlS9E9pV3tvUOTrZ0tlfvNgGa7RrO20WzXaHZotLXcHYKV16owTlXa-qOvpWIKyY672XMWEY9nEacxMMb_AD6HffE</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Khabbazibasmenj, Arash</creator><creator>Vorobyov, Sergiy A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC</title><author>Khabbazibasmenj, Arash ; Vorobyov, Sergiy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f90ee022045c672af676d283169d298f73cc176d77cbc43a4256ee8e578fbe093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Covariance matrices</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Difference-of-convex functions (DC) programming</topic><topic>Exact sciences and technology</topic><topic>general-rank signal model</topic><topic>Heuristic</topic><topic>Information, signal and communications theory</topic><topic>Member and Geographic Activities Board committees</topic><topic>non-convex programming</topic><topic>Operations research</topic><topic>Optimization</topic><topic>polynomial time DC (POTDC)</topic><topic>robust adaptive beamforming</topic><topic>Robustness</topic><topic>semi-definite programming relaxation</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khabbazibasmenj, Arash</creatorcontrib><creatorcontrib>Vorobyov, Sergiy A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khabbazibasmenj, Arash</au><au>Vorobyov, Sergiy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>61</volume><issue>23</issue><spage>6103</spage><epage>6117</epage><pages>6103-6117</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The robust adaptive beamforming (RAB) problem for general-rank signal model with an additional positive semi-definite constraint is considered. Using the principle of the worst-case performance optimization, such RAB problem leads to a difference-of-convex functions (DC) optimization problem. The existing approaches for solving the resulted non-convex DC problem are based on approximations and find only suboptimal solutions. Here, we aim at finding the globally optimal solution for the non-convex DC problem and clarify the conditions under which the solution is guaranteed to be globally optimal. Particularly, we rewrite the problem as the minimization of a one-dimensional optimal value function (OVF). Then, the OVF is replaced with another equivalent one, for which the corresponding optimization problem is convex. The new one-dimensional OVF is minimized iteratively via polynomial time DC (POTDC) algorithm. We show that the POTDC converges to a point that satisfies Karush-Kuhn-Tucker (KKT) optimality conditions, and such point is the global optimum under certain conditions. Towards this conclusion, we prove that the proposed algorithm finds the globally optimal solution if the presumed norm of the mismatch matrix that corresponds to the desired signal covariance matrix is sufficiently small. The new RAB method shows superior performance compared to the other state-of-the-art general-rank RAB methods.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2013.2281301</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2013-12, Vol.61 (23), p.6103-6117
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2013_2281301
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Array signal processing
Covariance matrices
Detection, estimation, filtering, equalization, prediction
Difference-of-convex functions (DC) programming
Exact sciences and technology
general-rank signal model
Heuristic
Information, signal and communications theory
Member and Geographic Activities Board committees
non-convex programming
Operations research
Optimization
polynomial time DC (POTDC)
robust adaptive beamforming
Robustness
semi-definite programming relaxation
Signal and communications theory
Signal to noise ratio
Signal, noise
Telecommunications and information theory
Vectors
title Robust Adaptive Beamforming for General-Rank Signal Model With Positive Semi-Definite Constraint via POTDC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Adaptive%20Beamforming%20for%20General-Rank%20Signal%20Model%20With%20Positive%20Semi-Definite%20Constraint%20via%20POTDC&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Khabbazibasmenj,%20Arash&rft.date=2013-12-01&rft.volume=61&rft.issue=23&rft.spage=6103&rft.epage=6117&rft.pages=6103-6117&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2013.2281301&rft_dat=%3Cproquest_RIE%3E3170227971%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1473311137&rft_id=info:pmid/&rft_ieee_id=6595122&rfr_iscdi=true