Parametrization of Linear Systems Using Diffusion Kernels
Modeling natural and artificial systems has played a key role in various applications and has long been a task that has drawn enormous efforts. In this work, instead of exploring predefined models, we aim to identify implicitly the system degrees of freedom. This approach circumvents the dependency...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2012-03, Vol.60 (3), p.1159-1173 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1173 |
---|---|
container_issue | 3 |
container_start_page | 1159 |
container_title | IEEE transactions on signal processing |
container_volume | 60 |
creator | Talmon, R. Kushnir, D. Coifman, R. R. Cohen, I. Gannot, S. |
description | Modeling natural and artificial systems has played a key role in various applications and has long been a task that has drawn enormous efforts. In this work, instead of exploring predefined models, we aim to identify implicitly the system degrees of freedom. This approach circumvents the dependency of a specific predefined model for a specific task or system and enables a generic data-driven method to characterize a system based solely on its output observations. We claim that each system can be viewed as a black box controlled by several independent parameters. Moreover, we assume that the perceptual characterization of the system output is determined by these independent parameters. Consequently, by recovering the independent controlling parameters, we find in fact a generic model for the system. In this work, we propose a supervised algorithm to recover the controlling parameters of natural and artificial linear systems. The proposed algorithm relies on nonlinear independent component analysis using diffusion kernels and spectral analysis. Employment of the proposed algorithm on both synthetic and practical examples has shown accurate recovery of parameters. |
doi_str_mv | 10.1109/TSP.2011.2177973 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2011_2177973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6094236</ieee_id><sourcerecordid>25512628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d949b1555afc2aa99044fd19d49039c34334ca3ed26e5b94a46427163cb4880c3</originalsourceid><addsrcrecordid>eNo9j01LAzEQQIMoWKt3wctePG7NJJPszlHqJxYstAVvSzabSKTdlmQ91F_vLi09zcC8N_AYuwU-AeD0sFzMJ4IDTAQUBRXyjI2AEHKOhT7vd65krsri65JdpfTDOSCSHjGam2g2rovhz3Rh22Zbn81C60zMFvvUuU3KVim039lT8P43DcSHi61bp2t24c06uZvjHLPVy_Ny-pbPPl_fp4-z3EqpurwhpBqUUsZbYQwRR_QNUIPEJVmJUqI10jVCO1UTGtQoCtDS1liW3Mox44e_Nm5Tis5Xuxg2Ju4r4NWQXvXp1ZBeHdN75f6g7EyyZu2jaW1IJ08oBUKLsufuDlxwzp3OmhMKqeU_a0ZhRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parametrization of Linear Systems Using Diffusion Kernels</title><source>IEEE Electronic Library (IEL)</source><creator>Talmon, R. ; Kushnir, D. ; Coifman, R. R. ; Cohen, I. ; Gannot, S.</creator><creatorcontrib>Talmon, R. ; Kushnir, D. ; Coifman, R. R. ; Cohen, I. ; Gannot, S.</creatorcontrib><description>Modeling natural and artificial systems has played a key role in various applications and has long been a task that has drawn enormous efforts. In this work, instead of exploring predefined models, we aim to identify implicitly the system degrees of freedom. This approach circumvents the dependency of a specific predefined model for a specific task or system and enables a generic data-driven method to characterize a system based solely on its output observations. We claim that each system can be viewed as a black box controlled by several independent parameters. Moreover, we assume that the perceptual characterization of the system output is determined by these independent parameters. Consequently, by recovering the independent controlling parameters, we find in fact a generic model for the system. In this work, we propose a supervised algorithm to recover the controlling parameters of natural and artificial linear systems. The proposed algorithm relies on nonlinear independent component analysis using diffusion kernels and spectral analysis. Employment of the proposed algorithm on both synthetic and practical examples has shown accurate recovery of parameters.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2177973</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aerospace electronics ; Applied sciences ; Approximation methods ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Information, signal and communications theory ; Kernel ; Linear systems ; modeling ; multidimensional signal processing ; non-parametric estimation ; nonlinear dynamical systems ; Signal and communications theory ; Signal processing algorithms ; Signal representation. Spectral analysis ; Signal, noise ; system identification ; Telecommunications and information theory ; Training ; Vectors</subject><ispartof>IEEE transactions on signal processing, 2012-03, Vol.60 (3), p.1159-1173</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d949b1555afc2aa99044fd19d49039c34334ca3ed26e5b94a46427163cb4880c3</citedby><cites>FETCH-LOGICAL-c335t-d949b1555afc2aa99044fd19d49039c34334ca3ed26e5b94a46427163cb4880c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6094236$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6094236$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25512628$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Talmon, R.</creatorcontrib><creatorcontrib>Kushnir, D.</creatorcontrib><creatorcontrib>Coifman, R. R.</creatorcontrib><creatorcontrib>Cohen, I.</creatorcontrib><creatorcontrib>Gannot, S.</creatorcontrib><title>Parametrization of Linear Systems Using Diffusion Kernels</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Modeling natural and artificial systems has played a key role in various applications and has long been a task that has drawn enormous efforts. In this work, instead of exploring predefined models, we aim to identify implicitly the system degrees of freedom. This approach circumvents the dependency of a specific predefined model for a specific task or system and enables a generic data-driven method to characterize a system based solely on its output observations. We claim that each system can be viewed as a black box controlled by several independent parameters. Moreover, we assume that the perceptual characterization of the system output is determined by these independent parameters. Consequently, by recovering the independent controlling parameters, we find in fact a generic model for the system. In this work, we propose a supervised algorithm to recover the controlling parameters of natural and artificial linear systems. The proposed algorithm relies on nonlinear independent component analysis using diffusion kernels and spectral analysis. Employment of the proposed algorithm on both synthetic and practical examples has shown accurate recovery of parameters.</description><subject>Aerospace electronics</subject><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>Linear systems</subject><subject>modeling</subject><subject>multidimensional signal processing</subject><subject>non-parametric estimation</subject><subject>nonlinear dynamical systems</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>system identification</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j01LAzEQQIMoWKt3wctePG7NJJPszlHqJxYstAVvSzabSKTdlmQ91F_vLi09zcC8N_AYuwU-AeD0sFzMJ4IDTAQUBRXyjI2AEHKOhT7vd65krsri65JdpfTDOSCSHjGam2g2rovhz3Rh22Zbn81C60zMFvvUuU3KVim039lT8P43DcSHi61bp2t24c06uZvjHLPVy_Ny-pbPPl_fp4-z3EqpurwhpBqUUsZbYQwRR_QNUIPEJVmJUqI10jVCO1UTGtQoCtDS1liW3Mox44e_Nm5Tis5Xuxg2Ju4r4NWQXvXp1ZBeHdN75f6g7EyyZu2jaW1IJ08oBUKLsufuDlxwzp3OmhMKqeU_a0ZhRw</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Talmon, R.</creator><creator>Kushnir, D.</creator><creator>Coifman, R. R.</creator><creator>Cohen, I.</creator><creator>Gannot, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120301</creationdate><title>Parametrization of Linear Systems Using Diffusion Kernels</title><author>Talmon, R. ; Kushnir, D. ; Coifman, R. R. ; Cohen, I. ; Gannot, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d949b1555afc2aa99044fd19d49039c34334ca3ed26e5b94a46427163cb4880c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerospace electronics</topic><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>Linear systems</topic><topic>modeling</topic><topic>multidimensional signal processing</topic><topic>non-parametric estimation</topic><topic>nonlinear dynamical systems</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>system identification</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talmon, R.</creatorcontrib><creatorcontrib>Kushnir, D.</creatorcontrib><creatorcontrib>Coifman, R. R.</creatorcontrib><creatorcontrib>Cohen, I.</creatorcontrib><creatorcontrib>Gannot, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Talmon, R.</au><au>Kushnir, D.</au><au>Coifman, R. R.</au><au>Cohen, I.</au><au>Gannot, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametrization of Linear Systems Using Diffusion Kernels</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>60</volume><issue>3</issue><spage>1159</spage><epage>1173</epage><pages>1159-1173</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Modeling natural and artificial systems has played a key role in various applications and has long been a task that has drawn enormous efforts. In this work, instead of exploring predefined models, we aim to identify implicitly the system degrees of freedom. This approach circumvents the dependency of a specific predefined model for a specific task or system and enables a generic data-driven method to characterize a system based solely on its output observations. We claim that each system can be viewed as a black box controlled by several independent parameters. Moreover, we assume that the perceptual characterization of the system output is determined by these independent parameters. Consequently, by recovering the independent controlling parameters, we find in fact a generic model for the system. In this work, we propose a supervised algorithm to recover the controlling parameters of natural and artificial linear systems. The proposed algorithm relies on nonlinear independent component analysis using diffusion kernels and spectral analysis. Employment of the proposed algorithm on both synthetic and practical examples has shown accurate recovery of parameters.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2177973</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2012-03, Vol.60 (3), p.1159-1173 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2011_2177973 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace electronics Applied sciences Approximation methods Detection, estimation, filtering, equalization, prediction Exact sciences and technology Information, signal and communications theory Kernel Linear systems modeling multidimensional signal processing non-parametric estimation nonlinear dynamical systems Signal and communications theory Signal processing algorithms Signal representation. Spectral analysis Signal, noise system identification Telecommunications and information theory Training Vectors |
title | Parametrization of Linear Systems Using Diffusion Kernels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametrization%20of%20Linear%20Systems%20Using%20Diffusion%20Kernels&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Talmon,%20R.&rft.date=2012-03-01&rft.volume=60&rft.issue=3&rft.spage=1159&rft.epage=1173&rft.pages=1159-1173&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2177973&rft_dat=%3Cpascalfrancis_RIE%3E25512628%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6094236&rfr_iscdi=true |