Parametrization of Linear Systems Using Diffusion Kernels

Modeling natural and artificial systems has played a key role in various applications and has long been a task that has drawn enormous efforts. In this work, instead of exploring predefined models, we aim to identify implicitly the system degrees of freedom. This approach circumvents the dependency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2012-03, Vol.60 (3), p.1159-1173
Hauptverfasser: Talmon, R., Kushnir, D., Coifman, R. R., Cohen, I., Gannot, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1173
container_issue 3
container_start_page 1159
container_title IEEE transactions on signal processing
container_volume 60
creator Talmon, R.
Kushnir, D.
Coifman, R. R.
Cohen, I.
Gannot, S.
description Modeling natural and artificial systems has played a key role in various applications and has long been a task that has drawn enormous efforts. In this work, instead of exploring predefined models, we aim to identify implicitly the system degrees of freedom. This approach circumvents the dependency of a specific predefined model for a specific task or system and enables a generic data-driven method to characterize a system based solely on its output observations. We claim that each system can be viewed as a black box controlled by several independent parameters. Moreover, we assume that the perceptual characterization of the system output is determined by these independent parameters. Consequently, by recovering the independent controlling parameters, we find in fact a generic model for the system. In this work, we propose a supervised algorithm to recover the controlling parameters of natural and artificial linear systems. The proposed algorithm relies on nonlinear independent component analysis using diffusion kernels and spectral analysis. Employment of the proposed algorithm on both synthetic and practical examples has shown accurate recovery of parameters.
doi_str_mv 10.1109/TSP.2011.2177973
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2011_2177973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6094236</ieee_id><sourcerecordid>25512628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d949b1555afc2aa99044fd19d49039c34334ca3ed26e5b94a46427163cb4880c3</originalsourceid><addsrcrecordid>eNo9j01LAzEQQIMoWKt3wctePG7NJJPszlHqJxYstAVvSzabSKTdlmQ91F_vLi09zcC8N_AYuwU-AeD0sFzMJ4IDTAQUBRXyjI2AEHKOhT7vd65krsri65JdpfTDOSCSHjGam2g2rovhz3Rh22Zbn81C60zMFvvUuU3KVim039lT8P43DcSHi61bp2t24c06uZvjHLPVy_Ny-pbPPl_fp4-z3EqpurwhpBqUUsZbYQwRR_QNUIPEJVmJUqI10jVCO1UTGtQoCtDS1liW3Mox44e_Nm5Tis5Xuxg2Ju4r4NWQXvXp1ZBeHdN75f6g7EyyZu2jaW1IJ08oBUKLsufuDlxwzp3OmhMKqeU_a0ZhRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parametrization of Linear Systems Using Diffusion Kernels</title><source>IEEE Electronic Library (IEL)</source><creator>Talmon, R. ; Kushnir, D. ; Coifman, R. R. ; Cohen, I. ; Gannot, S.</creator><creatorcontrib>Talmon, R. ; Kushnir, D. ; Coifman, R. R. ; Cohen, I. ; Gannot, S.</creatorcontrib><description>Modeling natural and artificial systems has played a key role in various applications and has long been a task that has drawn enormous efforts. In this work, instead of exploring predefined models, we aim to identify implicitly the system degrees of freedom. This approach circumvents the dependency of a specific predefined model for a specific task or system and enables a generic data-driven method to characterize a system based solely on its output observations. We claim that each system can be viewed as a black box controlled by several independent parameters. Moreover, we assume that the perceptual characterization of the system output is determined by these independent parameters. Consequently, by recovering the independent controlling parameters, we find in fact a generic model for the system. In this work, we propose a supervised algorithm to recover the controlling parameters of natural and artificial linear systems. The proposed algorithm relies on nonlinear independent component analysis using diffusion kernels and spectral analysis. Employment of the proposed algorithm on both synthetic and practical examples has shown accurate recovery of parameters.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2177973</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aerospace electronics ; Applied sciences ; Approximation methods ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Information, signal and communications theory ; Kernel ; Linear systems ; modeling ; multidimensional signal processing ; non-parametric estimation ; nonlinear dynamical systems ; Signal and communications theory ; Signal processing algorithms ; Signal representation. Spectral analysis ; Signal, noise ; system identification ; Telecommunications and information theory ; Training ; Vectors</subject><ispartof>IEEE transactions on signal processing, 2012-03, Vol.60 (3), p.1159-1173</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d949b1555afc2aa99044fd19d49039c34334ca3ed26e5b94a46427163cb4880c3</citedby><cites>FETCH-LOGICAL-c335t-d949b1555afc2aa99044fd19d49039c34334ca3ed26e5b94a46427163cb4880c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6094236$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6094236$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25512628$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Talmon, R.</creatorcontrib><creatorcontrib>Kushnir, D.</creatorcontrib><creatorcontrib>Coifman, R. R.</creatorcontrib><creatorcontrib>Cohen, I.</creatorcontrib><creatorcontrib>Gannot, S.</creatorcontrib><title>Parametrization of Linear Systems Using Diffusion Kernels</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Modeling natural and artificial systems has played a key role in various applications and has long been a task that has drawn enormous efforts. In this work, instead of exploring predefined models, we aim to identify implicitly the system degrees of freedom. This approach circumvents the dependency of a specific predefined model for a specific task or system and enables a generic data-driven method to characterize a system based solely on its output observations. We claim that each system can be viewed as a black box controlled by several independent parameters. Moreover, we assume that the perceptual characterization of the system output is determined by these independent parameters. Consequently, by recovering the independent controlling parameters, we find in fact a generic model for the system. In this work, we propose a supervised algorithm to recover the controlling parameters of natural and artificial linear systems. The proposed algorithm relies on nonlinear independent component analysis using diffusion kernels and spectral analysis. Employment of the proposed algorithm on both synthetic and practical examples has shown accurate recovery of parameters.</description><subject>Aerospace electronics</subject><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Kernel</subject><subject>Linear systems</subject><subject>modeling</subject><subject>multidimensional signal processing</subject><subject>non-parametric estimation</subject><subject>nonlinear dynamical systems</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>system identification</subject><subject>Telecommunications and information theory</subject><subject>Training</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j01LAzEQQIMoWKt3wctePG7NJJPszlHqJxYstAVvSzabSKTdlmQ91F_vLi09zcC8N_AYuwU-AeD0sFzMJ4IDTAQUBRXyjI2AEHKOhT7vd65krsri65JdpfTDOSCSHjGam2g2rovhz3Rh22Zbn81C60zMFvvUuU3KVim039lT8P43DcSHi61bp2t24c06uZvjHLPVy_Ny-pbPPl_fp4-z3EqpurwhpBqUUsZbYQwRR_QNUIPEJVmJUqI10jVCO1UTGtQoCtDS1liW3Mox44e_Nm5Tis5Xuxg2Ju4r4NWQXvXp1ZBeHdN75f6g7EyyZu2jaW1IJ08oBUKLsufuDlxwzp3OmhMKqeU_a0ZhRw</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Talmon, R.</creator><creator>Kushnir, D.</creator><creator>Coifman, R. R.</creator><creator>Cohen, I.</creator><creator>Gannot, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120301</creationdate><title>Parametrization of Linear Systems Using Diffusion Kernels</title><author>Talmon, R. ; Kushnir, D. ; Coifman, R. R. ; Cohen, I. ; Gannot, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d949b1555afc2aa99044fd19d49039c34334ca3ed26e5b94a46427163cb4880c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerospace electronics</topic><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Kernel</topic><topic>Linear systems</topic><topic>modeling</topic><topic>multidimensional signal processing</topic><topic>non-parametric estimation</topic><topic>nonlinear dynamical systems</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>system identification</topic><topic>Telecommunications and information theory</topic><topic>Training</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talmon, R.</creatorcontrib><creatorcontrib>Kushnir, D.</creatorcontrib><creatorcontrib>Coifman, R. R.</creatorcontrib><creatorcontrib>Cohen, I.</creatorcontrib><creatorcontrib>Gannot, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Talmon, R.</au><au>Kushnir, D.</au><au>Coifman, R. R.</au><au>Cohen, I.</au><au>Gannot, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametrization of Linear Systems Using Diffusion Kernels</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>60</volume><issue>3</issue><spage>1159</spage><epage>1173</epage><pages>1159-1173</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Modeling natural and artificial systems has played a key role in various applications and has long been a task that has drawn enormous efforts. In this work, instead of exploring predefined models, we aim to identify implicitly the system degrees of freedom. This approach circumvents the dependency of a specific predefined model for a specific task or system and enables a generic data-driven method to characterize a system based solely on its output observations. We claim that each system can be viewed as a black box controlled by several independent parameters. Moreover, we assume that the perceptual characterization of the system output is determined by these independent parameters. Consequently, by recovering the independent controlling parameters, we find in fact a generic model for the system. In this work, we propose a supervised algorithm to recover the controlling parameters of natural and artificial linear systems. The proposed algorithm relies on nonlinear independent component analysis using diffusion kernels and spectral analysis. Employment of the proposed algorithm on both synthetic and practical examples has shown accurate recovery of parameters.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2177973</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2012-03, Vol.60 (3), p.1159-1173
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2011_2177973
source IEEE Electronic Library (IEL)
subjects Aerospace electronics
Applied sciences
Approximation methods
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Information, signal and communications theory
Kernel
Linear systems
modeling
multidimensional signal processing
non-parametric estimation
nonlinear dynamical systems
Signal and communications theory
Signal processing algorithms
Signal representation. Spectral analysis
Signal, noise
system identification
Telecommunications and information theory
Training
Vectors
title Parametrization of Linear Systems Using Diffusion Kernels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametrization%20of%20Linear%20Systems%20Using%20Diffusion%20Kernels&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Talmon,%20R.&rft.date=2012-03-01&rft.volume=60&rft.issue=3&rft.spage=1159&rft.epage=1173&rft.pages=1159-1173&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2177973&rft_dat=%3Cpascalfrancis_RIE%3E25512628%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6094236&rfr_iscdi=true