Stochastic Geometric Filter and Its Application to Shape Estimation for Target Objects

We investigated how to estimate the shape of a target object. For this problem, we propose pair-line composite sensor nodes consisting of multiple sensors on a pair of line segments, where each sensor generates binary information whether it detects the target object or not. We show that the proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2011-10, Vol.59 (10), p.4971-4984
Hauptverfasser: Saito, H., Tanaka, S., Shioda, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4984
container_issue 10
container_start_page 4971
container_title IEEE transactions on signal processing
container_volume 59
creator Saito, H.
Tanaka, S.
Shioda, S.
description We investigated how to estimate the shape of a target object. For this problem, we propose pair-line composite sensor nodes consisting of multiple sensors on a pair of line segments, where each sensor generates binary information whether it detects the target object or not. We show that the proposed pair-line composite sensor nodes, which are randomly placed, can detect a certain range of angles; therefore, we also call them stochastic geometric filters. By random distribution of pair-line composite sensor nodes without GPS functions or careful placement at known locations, the information sent from the nodes enables us to estimate the boundary angles of the target object as well as its size and perimeter length. A composite sensor node can be conceptualized as between a sensor node equipped with GPS functions, or carefully placed sensors at known locations, and randomly deployed simple sensors without GPS functions.
doi_str_mv 10.1109/TSP.2011.2161476
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2011_2161476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5948423</ieee_id><sourcerecordid>2453088361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-ee92c805a84797640733ddb7b78ea7ba4323a2dd4e073cfe0024e5113929c1363</originalsourceid><addsrcrecordid>eNpdkM1LAzEQxRdR8PMueAmC4GVrJsluNsdSrAqFCq3iLaTZWd2y3axJevC_N6XFg6d5zPzeMPOy7BroCICqh-XidcQowIhBCUKWR9kZKAE5Tfo4aVrwvKjkx2l2HsKaUhBClWfZ-yI6-2VCbC15QrfB6JOatl1ET0xfk5cYyHgYutaa2LqeREcWX2ZA8pg8m32vcZ4sjf_ESOarNdoYLrOTxnQBrw71InubPi4nz_ls_vQyGc9yK0DFHFExW9HCVEIqWQoqOa_rlVzJCo1cGcEZN6yuBaaJbZBSJrAA4IopC7zkF9n9fu_g3fcWQ9SbNljsOtOj2wYNpUxwwUAm9PYfunZb36frdFUpLtNBPEF0D1nvQvDY6MGnL_2PBqp3OeuUs97lrA85J8vdYa8J1nSNN71tw5-PiUIxzmjibvZci4h_40KJSjDOfwHXz4Sr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889374193</pqid></control><display><type>article</type><title>Stochastic Geometric Filter and Its Application to Shape Estimation for Target Objects</title><source>IEEE Electronic Library (IEL)</source><creator>Saito, H. ; Tanaka, S. ; Shioda, S.</creator><creatorcontrib>Saito, H. ; Tanaka, S. ; Shioda, S.</creatorcontrib><description>We investigated how to estimate the shape of a target object. For this problem, we propose pair-line composite sensor nodes consisting of multiple sensors on a pair of line segments, where each sensor generates binary information whether it detects the target object or not. We show that the proposed pair-line composite sensor nodes, which are randomly placed, can detect a certain range of angles; therefore, we also call them stochastic geometric filters. By random distribution of pair-line composite sensor nodes without GPS functions or careful placement at known locations, the information sent from the nodes enables us to estimate the boundary angles of the target object as well as its size and perimeter length. A composite sensor node can be conceptualized as between a sensor node equipped with GPS functions, or carefully placed sensors at known locations, and randomly deployed simple sensors without GPS functions.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2011.2161476</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Angles (geometry) ; Applied sciences ; Boundaries ; Detection, estimation, filtering, equalization, prediction ; Estimates ; Estimation ; Exact sciences and technology ; Filter ; Geographic information systems ; Geometry ; Global Positioning System ; Information, signal and communications theory ; Object recognition ; pair-line composite sensor node ; Pattern recognition ; Satellite navigation systems ; sensor network ; Sensors ; Shape ; shape estimation ; Signal and communications theory ; Signal processing ; Signal, noise ; stochastic geometric filter ; Stochasticity ; Telecommunications and information theory ; Wireless sensor networks</subject><ispartof>IEEE transactions on signal processing, 2011-10, Vol.59 (10), p.4971-4984</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-ee92c805a84797640733ddb7b78ea7ba4323a2dd4e073cfe0024e5113929c1363</citedby><cites>FETCH-LOGICAL-c419t-ee92c805a84797640733ddb7b78ea7ba4323a2dd4e073cfe0024e5113929c1363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5948423$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5948423$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24592320$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Saito, H.</creatorcontrib><creatorcontrib>Tanaka, S.</creatorcontrib><creatorcontrib>Shioda, S.</creatorcontrib><title>Stochastic Geometric Filter and Its Application to Shape Estimation for Target Objects</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We investigated how to estimate the shape of a target object. For this problem, we propose pair-line composite sensor nodes consisting of multiple sensors on a pair of line segments, where each sensor generates binary information whether it detects the target object or not. We show that the proposed pair-line composite sensor nodes, which are randomly placed, can detect a certain range of angles; therefore, we also call them stochastic geometric filters. By random distribution of pair-line composite sensor nodes without GPS functions or careful placement at known locations, the information sent from the nodes enables us to estimate the boundary angles of the target object as well as its size and perimeter length. A composite sensor node can be conceptualized as between a sensor node equipped with GPS functions, or carefully placed sensors at known locations, and randomly deployed simple sensors without GPS functions.</description><subject>Angles (geometry)</subject><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Filter</subject><subject>Geographic information systems</subject><subject>Geometry</subject><subject>Global Positioning System</subject><subject>Information, signal and communications theory</subject><subject>Object recognition</subject><subject>pair-line composite sensor node</subject><subject>Pattern recognition</subject><subject>Satellite navigation systems</subject><subject>sensor network</subject><subject>Sensors</subject><subject>Shape</subject><subject>shape estimation</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>stochastic geometric filter</subject><subject>Stochasticity</subject><subject>Telecommunications and information theory</subject><subject>Wireless sensor networks</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1LAzEQxRdR8PMueAmC4GVrJsluNsdSrAqFCq3iLaTZWd2y3axJevC_N6XFg6d5zPzeMPOy7BroCICqh-XidcQowIhBCUKWR9kZKAE5Tfo4aVrwvKjkx2l2HsKaUhBClWfZ-yI6-2VCbC15QrfB6JOatl1ET0xfk5cYyHgYutaa2LqeREcWX2ZA8pg8m32vcZ4sjf_ESOarNdoYLrOTxnQBrw71InubPi4nz_ls_vQyGc9yK0DFHFExW9HCVEIqWQoqOa_rlVzJCo1cGcEZN6yuBaaJbZBSJrAA4IopC7zkF9n9fu_g3fcWQ9SbNljsOtOj2wYNpUxwwUAm9PYfunZb36frdFUpLtNBPEF0D1nvQvDY6MGnL_2PBqp3OeuUs97lrA85J8vdYa8J1nSNN71tw5-PiUIxzmjibvZci4h_40KJSjDOfwHXz4Sr</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Saito, H.</creator><creator>Tanaka, S.</creator><creator>Shioda, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111001</creationdate><title>Stochastic Geometric Filter and Its Application to Shape Estimation for Target Objects</title><author>Saito, H. ; Tanaka, S. ; Shioda, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-ee92c805a84797640733ddb7b78ea7ba4323a2dd4e073cfe0024e5113929c1363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Angles (geometry)</topic><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Filter</topic><topic>Geographic information systems</topic><topic>Geometry</topic><topic>Global Positioning System</topic><topic>Information, signal and communications theory</topic><topic>Object recognition</topic><topic>pair-line composite sensor node</topic><topic>Pattern recognition</topic><topic>Satellite navigation systems</topic><topic>sensor network</topic><topic>Sensors</topic><topic>Shape</topic><topic>shape estimation</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>stochastic geometric filter</topic><topic>Stochasticity</topic><topic>Telecommunications and information theory</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saito, H.</creatorcontrib><creatorcontrib>Tanaka, S.</creatorcontrib><creatorcontrib>Shioda, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saito, H.</au><au>Tanaka, S.</au><au>Shioda, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Geometric Filter and Its Application to Shape Estimation for Target Objects</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>59</volume><issue>10</issue><spage>4971</spage><epage>4984</epage><pages>4971-4984</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We investigated how to estimate the shape of a target object. For this problem, we propose pair-line composite sensor nodes consisting of multiple sensors on a pair of line segments, where each sensor generates binary information whether it detects the target object or not. We show that the proposed pair-line composite sensor nodes, which are randomly placed, can detect a certain range of angles; therefore, we also call them stochastic geometric filters. By random distribution of pair-line composite sensor nodes without GPS functions or careful placement at known locations, the information sent from the nodes enables us to estimate the boundary angles of the target object as well as its size and perimeter length. A composite sensor node can be conceptualized as between a sensor node equipped with GPS functions, or carefully placed sensors at known locations, and randomly deployed simple sensors without GPS functions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2011.2161476</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2011-10, Vol.59 (10), p.4971-4984
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2011_2161476
source IEEE Electronic Library (IEL)
subjects Angles (geometry)
Applied sciences
Boundaries
Detection, estimation, filtering, equalization, prediction
Estimates
Estimation
Exact sciences and technology
Filter
Geographic information systems
Geometry
Global Positioning System
Information, signal and communications theory
Object recognition
pair-line composite sensor node
Pattern recognition
Satellite navigation systems
sensor network
Sensors
Shape
shape estimation
Signal and communications theory
Signal processing
Signal, noise
stochastic geometric filter
Stochasticity
Telecommunications and information theory
Wireless sensor networks
title Stochastic Geometric Filter and Its Application to Shape Estimation for Target Objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Geometric%20Filter%20and%20Its%20Application%20to%20Shape%20Estimation%20for%20Target%20Objects&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Saito,%20H.&rft.date=2011-10-01&rft.volume=59&rft.issue=10&rft.spage=4971&rft.epage=4984&rft.pages=4971-4984&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2011.2161476&rft_dat=%3Cproquest_RIE%3E2453088361%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889374193&rft_id=info:pmid/&rft_ieee_id=5948423&rfr_iscdi=true