Myriad-Type Polynomial Filtering

Linear combinations of polynomial terms yield poor performance in environments characterized by heavy-tailed distributions. Weighted myriad (WMy) filters, however, are well known for their outlier suppression and detail preservation properties. It is shown here that the WMy methodology is naturally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-02, Vol.55 (2), p.747-753
Hauptverfasser: Aysal, T.C., Barner, K.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 753
container_issue 2
container_start_page 747
container_title IEEE transactions on signal processing
container_volume 55
creator Aysal, T.C.
Barner, K.E.
description Linear combinations of polynomial terms yield poor performance in environments characterized by heavy-tailed distributions. Weighted myriad (WMy) filters, however, are well known for their outlier suppression and detail preservation properties. It is shown here that the WMy methodology is naturally extended to the polynomial sample case, yielding filter structures that exploit the higher order statistics of the observed samples while simultaneously being robust to outliers for heavy-tailed distributions environments. Moreover, the introduced power weighted myriad (PWMy) filter class is well motivated by analysis of cross- and square-term statistics of heavy-tailed distributions. The effectiveness of the proposed filter is evaluated through simulations
doi_str_mv 10.1109/TSP.2006.885758
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2006_885758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4063531</ieee_id><sourcerecordid>889378676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-be061a83728d4f6033edea1aa374fff0af88c886127f319393694cee510793e03</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoqNWzBy9FUE_bJjv5mBylWBUqFqzgLcRtIinb3Zq0h_337rJFwYOnGZhn3mEeQi4YHTFG9XjxOh_llMoRolACD8gJ05xllCt52PZUQCZQvR-T05RWlDLOtTwhw-cmBrvMFs3GDed12VT1OthyOA3l1sVQfZ6RI2_L5M73dUDepveLyWM2e3l4mtzNsgKQbbMPRyWzCCrHJfeSArils8xaUNx7T61HLBAly5UHpkGD1LxwTjCqNDgKA3Lb525i_bVzaWvWIRWuLG3l6l0yiBoUSiVb8uZfEjhqwSFvwas_4Krexar9wqDkApRU3d1xDxWxTik6bzYxrG1sDKOmE2tasaYTa3qx7cb1PtamwpY-2qoI6XcNW7NcdsmXPReccz9jTiUIYPANKZZ-KA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864537670</pqid></control><display><type>article</type><title>Myriad-Type Polynomial Filtering</title><source>IEEE Electronic Library (IEL)</source><creator>Aysal, T.C. ; Barner, K.E.</creator><creatorcontrib>Aysal, T.C. ; Barner, K.E.</creatorcontrib><description>Linear combinations of polynomial terms yield poor performance in environments characterized by heavy-tailed distributions. Weighted myriad (WMy) filters, however, are well known for their outlier suppression and detail preservation properties. It is shown here that the WMy methodology is naturally extended to the polynomial sample case, yielding filter structures that exploit the higher order statistics of the observed samples while simultaneously being robust to outliers for heavy-tailed distributions environments. Moreover, the introduced power weighted myriad (PWMy) filter class is well motivated by analysis of cross- and square-term statistics of heavy-tailed distributions. The effectiveness of the proposed filter is evaluated through simulations</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2006.885758</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>alpha -stable distributions ; Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Filtering ; Filters ; Filtration ; Higher order statistics ; impulsive processes ; Information, signal and communications theory ; Laplace equations ; myriad filters ; Nonlinear systems ; polynomial filtering ; Polynomials ; Pulse width modulation ; Robustness ; Samples ; Signal and communications theory ; Signal processing ; Signal, noise ; Simulation ; Statistical analysis ; Statistical distributions ; Statistical methods ; Statistics ; Telecommunications and information theory ; Volterra series</subject><ispartof>IEEE transactions on signal processing, 2007-02, Vol.55 (2), p.747-753</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-be061a83728d4f6033edea1aa374fff0af88c886127f319393694cee510793e03</citedby><cites>FETCH-LOGICAL-c381t-be061a83728d4f6033edea1aa374fff0af88c886127f319393694cee510793e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4063531$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4063531$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18449460$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aysal, T.C.</creatorcontrib><creatorcontrib>Barner, K.E.</creatorcontrib><title>Myriad-Type Polynomial Filtering</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Linear combinations of polynomial terms yield poor performance in environments characterized by heavy-tailed distributions. Weighted myriad (WMy) filters, however, are well known for their outlier suppression and detail preservation properties. It is shown here that the WMy methodology is naturally extended to the polynomial sample case, yielding filter structures that exploit the higher order statistics of the observed samples while simultaneously being robust to outliers for heavy-tailed distributions environments. Moreover, the introduced power weighted myriad (PWMy) filter class is well motivated by analysis of cross- and square-term statistics of heavy-tailed distributions. The effectiveness of the proposed filter is evaluated through simulations</description><subject>alpha -stable distributions</subject><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filters</subject><subject>Filtration</subject><subject>Higher order statistics</subject><subject>impulsive processes</subject><subject>Information, signal and communications theory</subject><subject>Laplace equations</subject><subject>myriad filters</subject><subject>Nonlinear systems</subject><subject>polynomial filtering</subject><subject>Polynomials</subject><subject>Pulse width modulation</subject><subject>Robustness</subject><subject>Samples</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Statistical distributions</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Telecommunications and information theory</subject><subject>Volterra series</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoqNWzBy9FUE_bJjv5mBylWBUqFqzgLcRtIinb3Zq0h_337rJFwYOnGZhn3mEeQi4YHTFG9XjxOh_llMoRolACD8gJ05xllCt52PZUQCZQvR-T05RWlDLOtTwhw-cmBrvMFs3GDed12VT1OthyOA3l1sVQfZ6RI2_L5M73dUDepveLyWM2e3l4mtzNsgKQbbMPRyWzCCrHJfeSArils8xaUNx7T61HLBAly5UHpkGD1LxwTjCqNDgKA3Lb525i_bVzaWvWIRWuLG3l6l0yiBoUSiVb8uZfEjhqwSFvwas_4Krexar9wqDkApRU3d1xDxWxTik6bzYxrG1sDKOmE2tasaYTa3qx7cb1PtamwpY-2qoI6XcNW7NcdsmXPReccz9jTiUIYPANKZZ-KA</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Aysal, T.C.</creator><creator>Barner, K.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070201</creationdate><title>Myriad-Type Polynomial Filtering</title><author>Aysal, T.C. ; Barner, K.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-be061a83728d4f6033edea1aa374fff0af88c886127f319393694cee510793e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>alpha -stable distributions</topic><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filters</topic><topic>Filtration</topic><topic>Higher order statistics</topic><topic>impulsive processes</topic><topic>Information, signal and communications theory</topic><topic>Laplace equations</topic><topic>myriad filters</topic><topic>Nonlinear systems</topic><topic>polynomial filtering</topic><topic>Polynomials</topic><topic>Pulse width modulation</topic><topic>Robustness</topic><topic>Samples</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Statistical distributions</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Telecommunications and information theory</topic><topic>Volterra series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aysal, T.C.</creatorcontrib><creatorcontrib>Barner, K.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aysal, T.C.</au><au>Barner, K.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myriad-Type Polynomial Filtering</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-02-01</date><risdate>2007</risdate><volume>55</volume><issue>2</issue><spage>747</spage><epage>753</epage><pages>747-753</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Linear combinations of polynomial terms yield poor performance in environments characterized by heavy-tailed distributions. Weighted myriad (WMy) filters, however, are well known for their outlier suppression and detail preservation properties. It is shown here that the WMy methodology is naturally extended to the polynomial sample case, yielding filter structures that exploit the higher order statistics of the observed samples while simultaneously being robust to outliers for heavy-tailed distributions environments. Moreover, the introduced power weighted myriad (PWMy) filter class is well motivated by analysis of cross- and square-term statistics of heavy-tailed distributions. The effectiveness of the proposed filter is evaluated through simulations</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2006.885758</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2007-02, Vol.55 (2), p.747-753
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2006_885758
source IEEE Electronic Library (IEL)
subjects alpha -stable distributions
Applied sciences
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Filtering
Filters
Filtration
Higher order statistics
impulsive processes
Information, signal and communications theory
Laplace equations
myriad filters
Nonlinear systems
polynomial filtering
Polynomials
Pulse width modulation
Robustness
Samples
Signal and communications theory
Signal processing
Signal, noise
Simulation
Statistical analysis
Statistical distributions
Statistical methods
Statistics
Telecommunications and information theory
Volterra series
title Myriad-Type Polynomial Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myriad-Type%20Polynomial%20Filtering&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Aysal,%20T.C.&rft.date=2007-02-01&rft.volume=55&rft.issue=2&rft.spage=747&rft.epage=753&rft.pages=747-753&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2006.885758&rft_dat=%3Cproquest_RIE%3E889378676%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864537670&rft_id=info:pmid/&rft_ieee_id=4063531&rfr_iscdi=true