Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm
The adaptive nonlinear predistorter is an effective technique to compensate for the nonlinear distortion existing in digital communication and control systems. However, available adaptive nonlinear predistorters using indirect learning are sensitive to measurement noise and do not perform optimally....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2007-01, Vol.55 (1), p.120-133 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | 1 |
container_start_page | 120 |
container_title | IEEE transactions on signal processing |
container_volume | 55 |
creator | Dayong Zhou DeBrunner, V.E. |
description | The adaptive nonlinear predistorter is an effective technique to compensate for the nonlinear distortion existing in digital communication and control systems. However, available adaptive nonlinear predistorters using indirect learning are sensitive to measurement noise and do not perform optimally. Other available types are either slow to converge, complicated in structure and computationally expensive, or do not consider the memory effects in nonlinear systems such as a high power amplifier (HPA). In this paper, we first propose several novel adaptive nonlinear predistorters based on direct learning algorithms - the nonlinear filtered-x RLS (NFXRLS) algorithm, the nonlinear adjoint LMS (NALMS) algorithm, and the nonlinear adjoint RLS (NARLS) algorithm. Using these new learning algorithms, we design adaptive nonlinear predistorters for an HPA with memory effects or for an HPA following a linear system. Because of the direct learning algorithm, these novel adaptive predistorters outperform nonlinear predistorters that are based on the indirect learning method in the sense of normalized mean square error (NMSE), bit error rate (BER), and spectral regrowth. Moreover, our developed adaptive nonlinear predistorters are computationally efficient and/or converge rapidly when compared to other adaptive nonlinear predistorters that use direct learning, and furthermore can be easily implemented. We further simplify our proposed algorithms by exploring the robustness of our proposed algorithm as well as by examining the statistical properties of what we call the "instantaneous equivalent linear" (IEL) filter. Simulation results confirm the effectiveness of our proposed algorithms |
doi_str_mv | 10.1109/TSP.2006.882058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2006_882058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4034263</ieee_id><sourcerecordid>34907249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-67f46aa567cf29cced70068c60516c97a79304137bdfbcb547ea6848f61b4ed3</originalsourceid><addsrcrecordid>eNp90U1rGzEQBuAlpJDE7bmHXESgzWkdaTWrj6PrpE3BTQP1oTcha2dthfXKkdaG_vvI2CTQQ04S6JkXDW9RfGZ0zBjVN_M_j-OKUjFWqqK1OinOmQZWUpDiNN9pzctayb9nxUVKT5QyAC3Oi18PYYcdmTR2M_gdkofQd75HG8ljxManIcQBYyLfbMKGhJ4MKyS3PqIbyCyz3vdLMumWIfphtf5YfGhtl_DT8RwV8-938-l9Ofv94-d0MisdgBxKIVsQ1tZCurbSzmEj88eVE7RmwmlppeYUGJeLpl24RQ0SrVCgWsEWgA0fFdeH2E0Mz1tMg1n75LDrbI9hm4xSmu8jqiy_vis5aCor0Ble_Qefwjb2eQmjBNRcScYyujkgF0NKEVuziX5t4z_DqNmXYHIJZl-COZSQJ74cY21ytmuj7Z1Pb2OKS6BCZnd5cB4RX5-BcqgE5y_q2I7J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864538711</pqid></control><display><type>article</type><title>Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Dayong Zhou ; DeBrunner, V.E.</creator><creatorcontrib>Dayong Zhou ; DeBrunner, V.E.</creatorcontrib><description>The adaptive nonlinear predistorter is an effective technique to compensate for the nonlinear distortion existing in digital communication and control systems. However, available adaptive nonlinear predistorters using indirect learning are sensitive to measurement noise and do not perform optimally. Other available types are either slow to converge, complicated in structure and computationally expensive, or do not consider the memory effects in nonlinear systems such as a high power amplifier (HPA). In this paper, we first propose several novel adaptive nonlinear predistorters based on direct learning algorithms - the nonlinear filtered-x RLS (NFXRLS) algorithm, the nonlinear adjoint LMS (NALMS) algorithm, and the nonlinear adjoint RLS (NARLS) algorithm. Using these new learning algorithms, we design adaptive nonlinear predistorters for an HPA with memory effects or for an HPA following a linear system. Because of the direct learning algorithm, these novel adaptive predistorters outperform nonlinear predistorters that are based on the indirect learning method in the sense of normalized mean square error (NMSE), bit error rate (BER), and spectral regrowth. Moreover, our developed adaptive nonlinear predistorters are computationally efficient and/or converge rapidly when compared to other adaptive nonlinear predistorters that use direct learning, and furthermore can be easily implemented. We further simplify our proposed algorithms by exploring the robustness of our proposed algorithm as well as by examining the statistical properties of what we call the "instantaneous equivalent linear" (IEL) filter. Simulation results confirm the effectiveness of our proposed algorithms</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2006.882058</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithms ; Adaptive control ; Adaptive filters ; adaptive nonlinear filter ; Adaptive systems ; Adjoints ; Algorithms ; Applied sciences ; Bit error rate ; Communication system control ; communication system nonlinearities ; Control systems ; Detection, estimation, filtering, equalization, prediction ; Digital communication ; Digital control ; Dynamical systems ; Exact sciences and technology ; Information, signal and communications theory ; Learning ; Mean square errors ; Nonlinear control systems ; Nonlinear distortion ; Nonlinear dynamics ; Nonlinearity ; power amplifiers ; predistortion ; Programmable control ; Resonance light scattering ; Signal and communications theory ; Signal, noise ; spectral regrowth ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2007-01, Vol.55 (1), p.120-133</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-67f46aa567cf29cced70068c60516c97a79304137bdfbcb547ea6848f61b4ed3</citedby><cites>FETCH-LOGICAL-c447t-67f46aa567cf29cced70068c60516c97a79304137bdfbcb547ea6848f61b4ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4034263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4034263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18374067$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dayong Zhou</creatorcontrib><creatorcontrib>DeBrunner, V.E.</creatorcontrib><title>Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The adaptive nonlinear predistorter is an effective technique to compensate for the nonlinear distortion existing in digital communication and control systems. However, available adaptive nonlinear predistorters using indirect learning are sensitive to measurement noise and do not perform optimally. Other available types are either slow to converge, complicated in structure and computationally expensive, or do not consider the memory effects in nonlinear systems such as a high power amplifier (HPA). In this paper, we first propose several novel adaptive nonlinear predistorters based on direct learning algorithms - the nonlinear filtered-x RLS (NFXRLS) algorithm, the nonlinear adjoint LMS (NALMS) algorithm, and the nonlinear adjoint RLS (NARLS) algorithm. Using these new learning algorithms, we design adaptive nonlinear predistorters for an HPA with memory effects or for an HPA following a linear system. Because of the direct learning algorithm, these novel adaptive predistorters outperform nonlinear predistorters that are based on the indirect learning method in the sense of normalized mean square error (NMSE), bit error rate (BER), and spectral regrowth. Moreover, our developed adaptive nonlinear predistorters are computationally efficient and/or converge rapidly when compared to other adaptive nonlinear predistorters that use direct learning, and furthermore can be easily implemented. We further simplify our proposed algorithms by exploring the robustness of our proposed algorithm as well as by examining the statistical properties of what we call the "instantaneous equivalent linear" (IEL) filter. Simulation results confirm the effectiveness of our proposed algorithms</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Adaptive filters</subject><subject>adaptive nonlinear filter</subject><subject>Adaptive systems</subject><subject>Adjoints</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bit error rate</subject><subject>Communication system control</subject><subject>communication system nonlinearities</subject><subject>Control systems</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Digital communication</subject><subject>Digital control</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Learning</subject><subject>Mean square errors</subject><subject>Nonlinear control systems</subject><subject>Nonlinear distortion</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>power amplifiers</subject><subject>predistortion</subject><subject>Programmable control</subject><subject>Resonance light scattering</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>spectral regrowth</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90U1rGzEQBuAlpJDE7bmHXESgzWkdaTWrj6PrpE3BTQP1oTcha2dthfXKkdaG_vvI2CTQQ04S6JkXDW9RfGZ0zBjVN_M_j-OKUjFWqqK1OinOmQZWUpDiNN9pzctayb9nxUVKT5QyAC3Oi18PYYcdmTR2M_gdkofQd75HG8ljxManIcQBYyLfbMKGhJ4MKyS3PqIbyCyz3vdLMumWIfphtf5YfGhtl_DT8RwV8-938-l9Ofv94-d0MisdgBxKIVsQ1tZCurbSzmEj88eVE7RmwmlppeYUGJeLpl24RQ0SrVCgWsEWgA0fFdeH2E0Mz1tMg1n75LDrbI9hm4xSmu8jqiy_vis5aCor0Ble_Qefwjb2eQmjBNRcScYyujkgF0NKEVuziX5t4z_DqNmXYHIJZl-COZSQJ74cY21ytmuj7Z1Pb2OKS6BCZnd5cB4RX5-BcqgE5y_q2I7J</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Dayong Zhou</creator><creator>DeBrunner, V.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200701</creationdate><title>Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm</title><author>Dayong Zhou ; DeBrunner, V.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-67f46aa567cf29cced70068c60516c97a79304137bdfbcb547ea6848f61b4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Adaptive filters</topic><topic>adaptive nonlinear filter</topic><topic>Adaptive systems</topic><topic>Adjoints</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bit error rate</topic><topic>Communication system control</topic><topic>communication system nonlinearities</topic><topic>Control systems</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Digital communication</topic><topic>Digital control</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Learning</topic><topic>Mean square errors</topic><topic>Nonlinear control systems</topic><topic>Nonlinear distortion</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>power amplifiers</topic><topic>predistortion</topic><topic>Programmable control</topic><topic>Resonance light scattering</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>spectral regrowth</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dayong Zhou</creatorcontrib><creatorcontrib>DeBrunner, V.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dayong Zhou</au><au>DeBrunner, V.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-01</date><risdate>2007</risdate><volume>55</volume><issue>1</issue><spage>120</spage><epage>133</epage><pages>120-133</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The adaptive nonlinear predistorter is an effective technique to compensate for the nonlinear distortion existing in digital communication and control systems. However, available adaptive nonlinear predistorters using indirect learning are sensitive to measurement noise and do not perform optimally. Other available types are either slow to converge, complicated in structure and computationally expensive, or do not consider the memory effects in nonlinear systems such as a high power amplifier (HPA). In this paper, we first propose several novel adaptive nonlinear predistorters based on direct learning algorithms - the nonlinear filtered-x RLS (NFXRLS) algorithm, the nonlinear adjoint LMS (NALMS) algorithm, and the nonlinear adjoint RLS (NARLS) algorithm. Using these new learning algorithms, we design adaptive nonlinear predistorters for an HPA with memory effects or for an HPA following a linear system. Because of the direct learning algorithm, these novel adaptive predistorters outperform nonlinear predistorters that are based on the indirect learning method in the sense of normalized mean square error (NMSE), bit error rate (BER), and spectral regrowth. Moreover, our developed adaptive nonlinear predistorters are computationally efficient and/or converge rapidly when compared to other adaptive nonlinear predistorters that use direct learning, and furthermore can be easily implemented. We further simplify our proposed algorithms by exploring the robustness of our proposed algorithm as well as by examining the statistical properties of what we call the "instantaneous equivalent linear" (IEL) filter. Simulation results confirm the effectiveness of our proposed algorithms</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2006.882058</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2007-01, Vol.55 (1), p.120-133 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2006_882058 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithms Adaptive control Adaptive filters adaptive nonlinear filter Adaptive systems Adjoints Algorithms Applied sciences Bit error rate Communication system control communication system nonlinearities Control systems Detection, estimation, filtering, equalization, prediction Digital communication Digital control Dynamical systems Exact sciences and technology Information, signal and communications theory Learning Mean square errors Nonlinear control systems Nonlinear distortion Nonlinear dynamics Nonlinearity power amplifiers predistortion Programmable control Resonance light scattering Signal and communications theory Signal, noise spectral regrowth Studies Telecommunications and information theory |
title | Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Adaptive%20Nonlinear%20Predistorters%20Based%20on%20the%20Direct%20Learning%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Dayong%20Zhou&rft.date=2007-01&rft.volume=55&rft.issue=1&rft.spage=120&rft.epage=133&rft.pages=120-133&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2006.882058&rft_dat=%3Cproquest_RIE%3E34907249%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864538711&rft_id=info:pmid/&rft_ieee_id=4034263&rfr_iscdi=true |