Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm

The adaptive nonlinear predistorter is an effective technique to compensate for the nonlinear distortion existing in digital communication and control systems. However, available adaptive nonlinear predistorters using indirect learning are sensitive to measurement noise and do not perform optimally....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2007-01, Vol.55 (1), p.120-133
Hauptverfasser: Dayong Zhou, DeBrunner, V.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 120
container_title IEEE transactions on signal processing
container_volume 55
creator Dayong Zhou
DeBrunner, V.E.
description The adaptive nonlinear predistorter is an effective technique to compensate for the nonlinear distortion existing in digital communication and control systems. However, available adaptive nonlinear predistorters using indirect learning are sensitive to measurement noise and do not perform optimally. Other available types are either slow to converge, complicated in structure and computationally expensive, or do not consider the memory effects in nonlinear systems such as a high power amplifier (HPA). In this paper, we first propose several novel adaptive nonlinear predistorters based on direct learning algorithms - the nonlinear filtered-x RLS (NFXRLS) algorithm, the nonlinear adjoint LMS (NALMS) algorithm, and the nonlinear adjoint RLS (NARLS) algorithm. Using these new learning algorithms, we design adaptive nonlinear predistorters for an HPA with memory effects or for an HPA following a linear system. Because of the direct learning algorithm, these novel adaptive predistorters outperform nonlinear predistorters that are based on the indirect learning method in the sense of normalized mean square error (NMSE), bit error rate (BER), and spectral regrowth. Moreover, our developed adaptive nonlinear predistorters are computationally efficient and/or converge rapidly when compared to other adaptive nonlinear predistorters that use direct learning, and furthermore can be easily implemented. We further simplify our proposed algorithms by exploring the robustness of our proposed algorithm as well as by examining the statistical properties of what we call the "instantaneous equivalent linear" (IEL) filter. Simulation results confirm the effectiveness of our proposed algorithms
doi_str_mv 10.1109/TSP.2006.882058
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2006_882058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4034263</ieee_id><sourcerecordid>34907249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-67f46aa567cf29cced70068c60516c97a79304137bdfbcb547ea6848f61b4ed3</originalsourceid><addsrcrecordid>eNp90U1rGzEQBuAlpJDE7bmHXESgzWkdaTWrj6PrpE3BTQP1oTcha2dthfXKkdaG_vvI2CTQQ04S6JkXDW9RfGZ0zBjVN_M_j-OKUjFWqqK1OinOmQZWUpDiNN9pzctayb9nxUVKT5QyAC3Oi18PYYcdmTR2M_gdkofQd75HG8ljxManIcQBYyLfbMKGhJ4MKyS3PqIbyCyz3vdLMumWIfphtf5YfGhtl_DT8RwV8-938-l9Ofv94-d0MisdgBxKIVsQ1tZCurbSzmEj88eVE7RmwmlppeYUGJeLpl24RQ0SrVCgWsEWgA0fFdeH2E0Mz1tMg1n75LDrbI9hm4xSmu8jqiy_vis5aCor0Ble_Qefwjb2eQmjBNRcScYyujkgF0NKEVuziX5t4z_DqNmXYHIJZl-COZSQJ74cY21ytmuj7Z1Pb2OKS6BCZnd5cB4RX5-BcqgE5y_q2I7J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864538711</pqid></control><display><type>article</type><title>Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Dayong Zhou ; DeBrunner, V.E.</creator><creatorcontrib>Dayong Zhou ; DeBrunner, V.E.</creatorcontrib><description>The adaptive nonlinear predistorter is an effective technique to compensate for the nonlinear distortion existing in digital communication and control systems. However, available adaptive nonlinear predistorters using indirect learning are sensitive to measurement noise and do not perform optimally. Other available types are either slow to converge, complicated in structure and computationally expensive, or do not consider the memory effects in nonlinear systems such as a high power amplifier (HPA). In this paper, we first propose several novel adaptive nonlinear predistorters based on direct learning algorithms - the nonlinear filtered-x RLS (NFXRLS) algorithm, the nonlinear adjoint LMS (NALMS) algorithm, and the nonlinear adjoint RLS (NARLS) algorithm. Using these new learning algorithms, we design adaptive nonlinear predistorters for an HPA with memory effects or for an HPA following a linear system. Because of the direct learning algorithm, these novel adaptive predistorters outperform nonlinear predistorters that are based on the indirect learning method in the sense of normalized mean square error (NMSE), bit error rate (BER), and spectral regrowth. Moreover, our developed adaptive nonlinear predistorters are computationally efficient and/or converge rapidly when compared to other adaptive nonlinear predistorters that use direct learning, and furthermore can be easily implemented. We further simplify our proposed algorithms by exploring the robustness of our proposed algorithm as well as by examining the statistical properties of what we call the "instantaneous equivalent linear" (IEL) filter. Simulation results confirm the effectiveness of our proposed algorithms</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2006.882058</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithms ; Adaptive control ; Adaptive filters ; adaptive nonlinear filter ; Adaptive systems ; Adjoints ; Algorithms ; Applied sciences ; Bit error rate ; Communication system control ; communication system nonlinearities ; Control systems ; Detection, estimation, filtering, equalization, prediction ; Digital communication ; Digital control ; Dynamical systems ; Exact sciences and technology ; Information, signal and communications theory ; Learning ; Mean square errors ; Nonlinear control systems ; Nonlinear distortion ; Nonlinear dynamics ; Nonlinearity ; power amplifiers ; predistortion ; Programmable control ; Resonance light scattering ; Signal and communications theory ; Signal, noise ; spectral regrowth ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2007-01, Vol.55 (1), p.120-133</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-67f46aa567cf29cced70068c60516c97a79304137bdfbcb547ea6848f61b4ed3</citedby><cites>FETCH-LOGICAL-c447t-67f46aa567cf29cced70068c60516c97a79304137bdfbcb547ea6848f61b4ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4034263$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4034263$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18374067$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dayong Zhou</creatorcontrib><creatorcontrib>DeBrunner, V.E.</creatorcontrib><title>Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The adaptive nonlinear predistorter is an effective technique to compensate for the nonlinear distortion existing in digital communication and control systems. However, available adaptive nonlinear predistorters using indirect learning are sensitive to measurement noise and do not perform optimally. Other available types are either slow to converge, complicated in structure and computationally expensive, or do not consider the memory effects in nonlinear systems such as a high power amplifier (HPA). In this paper, we first propose several novel adaptive nonlinear predistorters based on direct learning algorithms - the nonlinear filtered-x RLS (NFXRLS) algorithm, the nonlinear adjoint LMS (NALMS) algorithm, and the nonlinear adjoint RLS (NARLS) algorithm. Using these new learning algorithms, we design adaptive nonlinear predistorters for an HPA with memory effects or for an HPA following a linear system. Because of the direct learning algorithm, these novel adaptive predistorters outperform nonlinear predistorters that are based on the indirect learning method in the sense of normalized mean square error (NMSE), bit error rate (BER), and spectral regrowth. Moreover, our developed adaptive nonlinear predistorters are computationally efficient and/or converge rapidly when compared to other adaptive nonlinear predistorters that use direct learning, and furthermore can be easily implemented. We further simplify our proposed algorithms by exploring the robustness of our proposed algorithm as well as by examining the statistical properties of what we call the "instantaneous equivalent linear" (IEL) filter. Simulation results confirm the effectiveness of our proposed algorithms</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Adaptive filters</subject><subject>adaptive nonlinear filter</subject><subject>Adaptive systems</subject><subject>Adjoints</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Bit error rate</subject><subject>Communication system control</subject><subject>communication system nonlinearities</subject><subject>Control systems</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Digital communication</subject><subject>Digital control</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Learning</subject><subject>Mean square errors</subject><subject>Nonlinear control systems</subject><subject>Nonlinear distortion</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>power amplifiers</subject><subject>predistortion</subject><subject>Programmable control</subject><subject>Resonance light scattering</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>spectral regrowth</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90U1rGzEQBuAlpJDE7bmHXESgzWkdaTWrj6PrpE3BTQP1oTcha2dthfXKkdaG_vvI2CTQQ04S6JkXDW9RfGZ0zBjVN_M_j-OKUjFWqqK1OinOmQZWUpDiNN9pzctayb9nxUVKT5QyAC3Oi18PYYcdmTR2M_gdkofQd75HG8ljxManIcQBYyLfbMKGhJ4MKyS3PqIbyCyz3vdLMumWIfphtf5YfGhtl_DT8RwV8-938-l9Ofv94-d0MisdgBxKIVsQ1tZCurbSzmEj88eVE7RmwmlppeYUGJeLpl24RQ0SrVCgWsEWgA0fFdeH2E0Mz1tMg1n75LDrbI9hm4xSmu8jqiy_vis5aCor0Ble_Qefwjb2eQmjBNRcScYyujkgF0NKEVuziX5t4z_DqNmXYHIJZl-COZSQJ74cY21ytmuj7Z1Pb2OKS6BCZnd5cB4RX5-BcqgE5y_q2I7J</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Dayong Zhou</creator><creator>DeBrunner, V.E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200701</creationdate><title>Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm</title><author>Dayong Zhou ; DeBrunner, V.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-67f46aa567cf29cced70068c60516c97a79304137bdfbcb547ea6848f61b4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Adaptive filters</topic><topic>adaptive nonlinear filter</topic><topic>Adaptive systems</topic><topic>Adjoints</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Bit error rate</topic><topic>Communication system control</topic><topic>communication system nonlinearities</topic><topic>Control systems</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Digital communication</topic><topic>Digital control</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Learning</topic><topic>Mean square errors</topic><topic>Nonlinear control systems</topic><topic>Nonlinear distortion</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>power amplifiers</topic><topic>predistortion</topic><topic>Programmable control</topic><topic>Resonance light scattering</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>spectral regrowth</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dayong Zhou</creatorcontrib><creatorcontrib>DeBrunner, V.E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dayong Zhou</au><au>DeBrunner, V.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2007-01</date><risdate>2007</risdate><volume>55</volume><issue>1</issue><spage>120</spage><epage>133</epage><pages>120-133</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The adaptive nonlinear predistorter is an effective technique to compensate for the nonlinear distortion existing in digital communication and control systems. However, available adaptive nonlinear predistorters using indirect learning are sensitive to measurement noise and do not perform optimally. Other available types are either slow to converge, complicated in structure and computationally expensive, or do not consider the memory effects in nonlinear systems such as a high power amplifier (HPA). In this paper, we first propose several novel adaptive nonlinear predistorters based on direct learning algorithms - the nonlinear filtered-x RLS (NFXRLS) algorithm, the nonlinear adjoint LMS (NALMS) algorithm, and the nonlinear adjoint RLS (NARLS) algorithm. Using these new learning algorithms, we design adaptive nonlinear predistorters for an HPA with memory effects or for an HPA following a linear system. Because of the direct learning algorithm, these novel adaptive predistorters outperform nonlinear predistorters that are based on the indirect learning method in the sense of normalized mean square error (NMSE), bit error rate (BER), and spectral regrowth. Moreover, our developed adaptive nonlinear predistorters are computationally efficient and/or converge rapidly when compared to other adaptive nonlinear predistorters that use direct learning, and furthermore can be easily implemented. We further simplify our proposed algorithms by exploring the robustness of our proposed algorithm as well as by examining the statistical properties of what we call the "instantaneous equivalent linear" (IEL) filter. Simulation results confirm the effectiveness of our proposed algorithms</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2006.882058</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2007-01, Vol.55 (1), p.120-133
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2006_882058
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Adaptive control
Adaptive filters
adaptive nonlinear filter
Adaptive systems
Adjoints
Algorithms
Applied sciences
Bit error rate
Communication system control
communication system nonlinearities
Control systems
Detection, estimation, filtering, equalization, prediction
Digital communication
Digital control
Dynamical systems
Exact sciences and technology
Information, signal and communications theory
Learning
Mean square errors
Nonlinear control systems
Nonlinear distortion
Nonlinear dynamics
Nonlinearity
power amplifiers
predistortion
Programmable control
Resonance light scattering
Signal and communications theory
Signal, noise
spectral regrowth
Studies
Telecommunications and information theory
title Novel Adaptive Nonlinear Predistorters Based on the Direct Learning Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Adaptive%20Nonlinear%20Predistorters%20Based%20on%20the%20Direct%20Learning%20Algorithm&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Dayong%20Zhou&rft.date=2007-01&rft.volume=55&rft.issue=1&rft.spage=120&rft.epage=133&rft.pages=120-133&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2006.882058&rft_dat=%3Cproquest_RIE%3E34907249%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864538711&rft_id=info:pmid/&rft_ieee_id=4034263&rfr_iscdi=true