A channel subspace post-filtering approach to adaptive least-squares estimation

A major challenge while communicating in dynamic channels, such as the underwater acoustic channel, is the large amount of time-varying inter-symbol interference (ISI) due to multipath. In many realistic channels, the fluctuations between different taps of the sampled channel impulse response are co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2004-07, Vol.52 (7), p.1901-1914
Hauptverfasser: Nadakuditi, R., Preisig, J.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1914
container_issue 7
container_start_page 1901
container_title IEEE transactions on signal processing
container_volume 52
creator Nadakuditi, R.
Preisig, J.C.
description A major challenge while communicating in dynamic channels, such as the underwater acoustic channel, is the large amount of time-varying inter-symbol interference (ISI) due to multipath. In many realistic channels, the fluctuations between different taps of the sampled channel impulse response are correlated. Traditional least-squares algorithms used for adapting channel equalizers do not exploit this correlation structure. A channel subspace post-filtering algorithm is presented that treats the least-squares channel estimate as a noisy time series and exploits the channel correlation structure to reduce the channel estimation error. The improvement in performance of the post-filtered channel estimator is predicted theoretically and demonstrated using both simulation and experimental data. Experimental data is also used to demonstrate the improvement in performance of a channel estimate-based decision feedback equalizer that uses this post-filtered channel estimate to determine the equalizer coefficients.
doi_str_mv 10.1109/TSP.2004.828926
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2004_828926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1306645</ieee_id><sourcerecordid>2426394741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-9110f0fc17ce36fbe64539bf4366856b99ff67e724693fb9f28df25b8e8cb1e43</originalsourceid><addsrcrecordid>eNp9kctLAzEQxhdRsD7OHrwEwcdla96bHEV8QaGCCt5CNp3YLdvdbbIr-N-b0kLBg6cZmN_MfDNflp0RPCYE69v3t9cxxZiPFVWayr1sRDQnOeaF3E85FiwXqvg8zI5iXGBMONdylE3vkJvbpoEaxaGMnXWAujb2ua_qHkLVfCHbdaG1bo76FtmZ7frqG1ANNkFxNdgAEUHsq6Xtq7Y5yQ68rSOcbuNx9vH48H7_nE-mTy_3d5PccUL7XCfJHntHCgdM-hIkF0yXnjMplZCl1t7LAgrKpWa-1J6qmaeiVKBcSYCz4-x6MzdpWw1pv1lW0UFd2wbaIRqNiRScC5XIq39JqghnBNME3vwLkoJhrDUV6-0Xf9BFO4QmHWyUYqKgDLME3W4gF9oYA3jThfSl8GMINmvLTLLMrC0zG8tSx-V2rI3O1j7YxlVx1yaUFEKQxJ1vuAoAdmWG5fqNv7VfnkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883572303</pqid></control><display><type>article</type><title>A channel subspace post-filtering approach to adaptive least-squares estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Nadakuditi, R. ; Preisig, J.C.</creator><creatorcontrib>Nadakuditi, R. ; Preisig, J.C.</creatorcontrib><description>A major challenge while communicating in dynamic channels, such as the underwater acoustic channel, is the large amount of time-varying inter-symbol interference (ISI) due to multipath. In many realistic channels, the fluctuations between different taps of the sampled channel impulse response are correlated. Traditional least-squares algorithms used for adapting channel equalizers do not exploit this correlation structure. A channel subspace post-filtering algorithm is presented that treats the least-squares channel estimate as a noisy time series and exploits the channel correlation structure to reduce the channel estimation error. The improvement in performance of the post-filtered channel estimator is predicted theoretically and demonstrated using both simulation and experimental data. Experimental data is also used to demonstrate the improvement in performance of a channel estimate-based decision feedback equalizer that uses this post-filtered channel estimate to determine the equalizer coefficients.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2004.828926</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Channels ; Correlation ; Covariance matrix ; Decision feedback equalizers ; Detection, estimation, filtering, equalization, prediction ; Equalizers ; Estimates ; Exact sciences and technology ; Filtering algorithms ; Fluctuations ; Impulse response ; Information, signal and communications theory ; Intersymbol interference ; Least squares method ; Multipath channels ; Oceans ; Signal and communications theory ; Signal processing algorithms ; Signal, noise ; Subspaces ; Telecommunications and information theory ; Underwater acoustics</subject><ispartof>IEEE transactions on signal processing, 2004-07, Vol.52 (7), p.1901-1914</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-9110f0fc17ce36fbe64539bf4366856b99ff67e724693fb9f28df25b8e8cb1e43</citedby><cites>FETCH-LOGICAL-c412t-9110f0fc17ce36fbe64539bf4366856b99ff67e724693fb9f28df25b8e8cb1e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1306645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1306645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15865551$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadakuditi, R.</creatorcontrib><creatorcontrib>Preisig, J.C.</creatorcontrib><title>A channel subspace post-filtering approach to adaptive least-squares estimation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A major challenge while communicating in dynamic channels, such as the underwater acoustic channel, is the large amount of time-varying inter-symbol interference (ISI) due to multipath. In many realistic channels, the fluctuations between different taps of the sampled channel impulse response are correlated. Traditional least-squares algorithms used for adapting channel equalizers do not exploit this correlation structure. A channel subspace post-filtering algorithm is presented that treats the least-squares channel estimate as a noisy time series and exploits the channel correlation structure to reduce the channel estimation error. The improvement in performance of the post-filtered channel estimator is predicted theoretically and demonstrated using both simulation and experimental data. Experimental data is also used to demonstrate the improvement in performance of a channel estimate-based decision feedback equalizer that uses this post-filtered channel estimate to determine the equalizer coefficients.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Channels</subject><subject>Correlation</subject><subject>Covariance matrix</subject><subject>Decision feedback equalizers</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Equalizers</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Filtering algorithms</subject><subject>Fluctuations</subject><subject>Impulse response</subject><subject>Information, signal and communications theory</subject><subject>Intersymbol interference</subject><subject>Least squares method</subject><subject>Multipath channels</subject><subject>Oceans</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Subspaces</subject><subject>Telecommunications and information theory</subject><subject>Underwater acoustics</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctLAzEQxhdRsD7OHrwEwcdla96bHEV8QaGCCt5CNp3YLdvdbbIr-N-b0kLBg6cZmN_MfDNflp0RPCYE69v3t9cxxZiPFVWayr1sRDQnOeaF3E85FiwXqvg8zI5iXGBMONdylE3vkJvbpoEaxaGMnXWAujb2ua_qHkLVfCHbdaG1bo76FtmZ7frqG1ANNkFxNdgAEUHsq6Xtq7Y5yQ68rSOcbuNx9vH48H7_nE-mTy_3d5PccUL7XCfJHntHCgdM-hIkF0yXnjMplZCl1t7LAgrKpWa-1J6qmaeiVKBcSYCz4-x6MzdpWw1pv1lW0UFd2wbaIRqNiRScC5XIq39JqghnBNME3vwLkoJhrDUV6-0Xf9BFO4QmHWyUYqKgDLME3W4gF9oYA3jThfSl8GMINmvLTLLMrC0zG8tSx-V2rI3O1j7YxlVx1yaUFEKQxJ1vuAoAdmWG5fqNv7VfnkQ</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Nadakuditi, R.</creator><creator>Preisig, J.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20040701</creationdate><title>A channel subspace post-filtering approach to adaptive least-squares estimation</title><author>Nadakuditi, R. ; Preisig, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-9110f0fc17ce36fbe64539bf4366856b99ff67e724693fb9f28df25b8e8cb1e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Channels</topic><topic>Correlation</topic><topic>Covariance matrix</topic><topic>Decision feedback equalizers</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Equalizers</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Filtering algorithms</topic><topic>Fluctuations</topic><topic>Impulse response</topic><topic>Information, signal and communications theory</topic><topic>Intersymbol interference</topic><topic>Least squares method</topic><topic>Multipath channels</topic><topic>Oceans</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Subspaces</topic><topic>Telecommunications and information theory</topic><topic>Underwater acoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadakuditi, R.</creatorcontrib><creatorcontrib>Preisig, J.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nadakuditi, R.</au><au>Preisig, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A channel subspace post-filtering approach to adaptive least-squares estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2004-07-01</date><risdate>2004</risdate><volume>52</volume><issue>7</issue><spage>1901</spage><epage>1914</epage><pages>1901-1914</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A major challenge while communicating in dynamic channels, such as the underwater acoustic channel, is the large amount of time-varying inter-symbol interference (ISI) due to multipath. In many realistic channels, the fluctuations between different taps of the sampled channel impulse response are correlated. Traditional least-squares algorithms used for adapting channel equalizers do not exploit this correlation structure. A channel subspace post-filtering algorithm is presented that treats the least-squares channel estimate as a noisy time series and exploits the channel correlation structure to reduce the channel estimation error. The improvement in performance of the post-filtered channel estimator is predicted theoretically and demonstrated using both simulation and experimental data. Experimental data is also used to demonstrate the improvement in performance of a channel estimate-based decision feedback equalizer that uses this post-filtered channel estimate to determine the equalizer coefficients.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2004.828926</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2004-07, Vol.52 (7), p.1901-1914
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_TSP_2004_828926
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Applied sciences
Channels
Correlation
Covariance matrix
Decision feedback equalizers
Detection, estimation, filtering, equalization, prediction
Equalizers
Estimates
Exact sciences and technology
Filtering algorithms
Fluctuations
Impulse response
Information, signal and communications theory
Intersymbol interference
Least squares method
Multipath channels
Oceans
Signal and communications theory
Signal processing algorithms
Signal, noise
Subspaces
Telecommunications and information theory
Underwater acoustics
title A channel subspace post-filtering approach to adaptive least-squares estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20channel%20subspace%20post-filtering%20approach%20to%20adaptive%20least-squares%20estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Nadakuditi,%20R.&rft.date=2004-07-01&rft.volume=52&rft.issue=7&rft.spage=1901&rft.epage=1914&rft.pages=1901-1914&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2004.828926&rft_dat=%3Cproquest_RIE%3E2426394741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883572303&rft_id=info:pmid/&rft_ieee_id=1306645&rfr_iscdi=true