A channel subspace post-filtering approach to adaptive least-squares estimation
A major challenge while communicating in dynamic channels, such as the underwater acoustic channel, is the large amount of time-varying inter-symbol interference (ISI) due to multipath. In many realistic channels, the fluctuations between different taps of the sampled channel impulse response are co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2004-07, Vol.52 (7), p.1901-1914 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1914 |
---|---|
container_issue | 7 |
container_start_page | 1901 |
container_title | IEEE transactions on signal processing |
container_volume | 52 |
creator | Nadakuditi, R. Preisig, J.C. |
description | A major challenge while communicating in dynamic channels, such as the underwater acoustic channel, is the large amount of time-varying inter-symbol interference (ISI) due to multipath. In many realistic channels, the fluctuations between different taps of the sampled channel impulse response are correlated. Traditional least-squares algorithms used for adapting channel equalizers do not exploit this correlation structure. A channel subspace post-filtering algorithm is presented that treats the least-squares channel estimate as a noisy time series and exploits the channel correlation structure to reduce the channel estimation error. The improvement in performance of the post-filtered channel estimator is predicted theoretically and demonstrated using both simulation and experimental data. Experimental data is also used to demonstrate the improvement in performance of a channel estimate-based decision feedback equalizer that uses this post-filtered channel estimate to determine the equalizer coefficients. |
doi_str_mv | 10.1109/TSP.2004.828926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSP_2004_828926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1306645</ieee_id><sourcerecordid>2426394741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-9110f0fc17ce36fbe64539bf4366856b99ff67e724693fb9f28df25b8e8cb1e43</originalsourceid><addsrcrecordid>eNp9kctLAzEQxhdRsD7OHrwEwcdla96bHEV8QaGCCt5CNp3YLdvdbbIr-N-b0kLBg6cZmN_MfDNflp0RPCYE69v3t9cxxZiPFVWayr1sRDQnOeaF3E85FiwXqvg8zI5iXGBMONdylE3vkJvbpoEaxaGMnXWAujb2ua_qHkLVfCHbdaG1bo76FtmZ7frqG1ANNkFxNdgAEUHsq6Xtq7Y5yQ68rSOcbuNx9vH48H7_nE-mTy_3d5PccUL7XCfJHntHCgdM-hIkF0yXnjMplZCl1t7LAgrKpWa-1J6qmaeiVKBcSYCz4-x6MzdpWw1pv1lW0UFd2wbaIRqNiRScC5XIq39JqghnBNME3vwLkoJhrDUV6-0Xf9BFO4QmHWyUYqKgDLME3W4gF9oYA3jThfSl8GMINmvLTLLMrC0zG8tSx-V2rI3O1j7YxlVx1yaUFEKQxJ1vuAoAdmWG5fqNv7VfnkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883572303</pqid></control><display><type>article</type><title>A channel subspace post-filtering approach to adaptive least-squares estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Nadakuditi, R. ; Preisig, J.C.</creator><creatorcontrib>Nadakuditi, R. ; Preisig, J.C.</creatorcontrib><description>A major challenge while communicating in dynamic channels, such as the underwater acoustic channel, is the large amount of time-varying inter-symbol interference (ISI) due to multipath. In many realistic channels, the fluctuations between different taps of the sampled channel impulse response are correlated. Traditional least-squares algorithms used for adapting channel equalizers do not exploit this correlation structure. A channel subspace post-filtering algorithm is presented that treats the least-squares channel estimate as a noisy time series and exploits the channel correlation structure to reduce the channel estimation error. The improvement in performance of the post-filtered channel estimator is predicted theoretically and demonstrated using both simulation and experimental data. Experimental data is also used to demonstrate the improvement in performance of a channel estimate-based decision feedback equalizer that uses this post-filtered channel estimate to determine the equalizer coefficients.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2004.828926</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Channels ; Correlation ; Covariance matrix ; Decision feedback equalizers ; Detection, estimation, filtering, equalization, prediction ; Equalizers ; Estimates ; Exact sciences and technology ; Filtering algorithms ; Fluctuations ; Impulse response ; Information, signal and communications theory ; Intersymbol interference ; Least squares method ; Multipath channels ; Oceans ; Signal and communications theory ; Signal processing algorithms ; Signal, noise ; Subspaces ; Telecommunications and information theory ; Underwater acoustics</subject><ispartof>IEEE transactions on signal processing, 2004-07, Vol.52 (7), p.1901-1914</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-9110f0fc17ce36fbe64539bf4366856b99ff67e724693fb9f28df25b8e8cb1e43</citedby><cites>FETCH-LOGICAL-c412t-9110f0fc17ce36fbe64539bf4366856b99ff67e724693fb9f28df25b8e8cb1e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1306645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1306645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15865551$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadakuditi, R.</creatorcontrib><creatorcontrib>Preisig, J.C.</creatorcontrib><title>A channel subspace post-filtering approach to adaptive least-squares estimation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>A major challenge while communicating in dynamic channels, such as the underwater acoustic channel, is the large amount of time-varying inter-symbol interference (ISI) due to multipath. In many realistic channels, the fluctuations between different taps of the sampled channel impulse response are correlated. Traditional least-squares algorithms used for adapting channel equalizers do not exploit this correlation structure. A channel subspace post-filtering algorithm is presented that treats the least-squares channel estimate as a noisy time series and exploits the channel correlation structure to reduce the channel estimation error. The improvement in performance of the post-filtered channel estimator is predicted theoretically and demonstrated using both simulation and experimental data. Experimental data is also used to demonstrate the improvement in performance of a channel estimate-based decision feedback equalizer that uses this post-filtered channel estimate to determine the equalizer coefficients.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Channels</subject><subject>Correlation</subject><subject>Covariance matrix</subject><subject>Decision feedback equalizers</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Equalizers</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Filtering algorithms</subject><subject>Fluctuations</subject><subject>Impulse response</subject><subject>Information, signal and communications theory</subject><subject>Intersymbol interference</subject><subject>Least squares method</subject><subject>Multipath channels</subject><subject>Oceans</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Subspaces</subject><subject>Telecommunications and information theory</subject><subject>Underwater acoustics</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctLAzEQxhdRsD7OHrwEwcdla96bHEV8QaGCCt5CNp3YLdvdbbIr-N-b0kLBg6cZmN_MfDNflp0RPCYE69v3t9cxxZiPFVWayr1sRDQnOeaF3E85FiwXqvg8zI5iXGBMONdylE3vkJvbpoEaxaGMnXWAujb2ua_qHkLVfCHbdaG1bo76FtmZ7frqG1ANNkFxNdgAEUHsq6Xtq7Y5yQ68rSOcbuNx9vH48H7_nE-mTy_3d5PccUL7XCfJHntHCgdM-hIkF0yXnjMplZCl1t7LAgrKpWa-1J6qmaeiVKBcSYCz4-x6MzdpWw1pv1lW0UFd2wbaIRqNiRScC5XIq39JqghnBNME3vwLkoJhrDUV6-0Xf9BFO4QmHWyUYqKgDLME3W4gF9oYA3jThfSl8GMINmvLTLLMrC0zG8tSx-V2rI3O1j7YxlVx1yaUFEKQxJ1vuAoAdmWG5fqNv7VfnkQ</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Nadakuditi, R.</creator><creator>Preisig, J.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20040701</creationdate><title>A channel subspace post-filtering approach to adaptive least-squares estimation</title><author>Nadakuditi, R. ; Preisig, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-9110f0fc17ce36fbe64539bf4366856b99ff67e724693fb9f28df25b8e8cb1e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Channels</topic><topic>Correlation</topic><topic>Covariance matrix</topic><topic>Decision feedback equalizers</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Equalizers</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Filtering algorithms</topic><topic>Fluctuations</topic><topic>Impulse response</topic><topic>Information, signal and communications theory</topic><topic>Intersymbol interference</topic><topic>Least squares method</topic><topic>Multipath channels</topic><topic>Oceans</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Subspaces</topic><topic>Telecommunications and information theory</topic><topic>Underwater acoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadakuditi, R.</creatorcontrib><creatorcontrib>Preisig, J.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nadakuditi, R.</au><au>Preisig, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A channel subspace post-filtering approach to adaptive least-squares estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2004-07-01</date><risdate>2004</risdate><volume>52</volume><issue>7</issue><spage>1901</spage><epage>1914</epage><pages>1901-1914</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>A major challenge while communicating in dynamic channels, such as the underwater acoustic channel, is the large amount of time-varying inter-symbol interference (ISI) due to multipath. In many realistic channels, the fluctuations between different taps of the sampled channel impulse response are correlated. Traditional least-squares algorithms used for adapting channel equalizers do not exploit this correlation structure. A channel subspace post-filtering algorithm is presented that treats the least-squares channel estimate as a noisy time series and exploits the channel correlation structure to reduce the channel estimation error. The improvement in performance of the post-filtered channel estimator is predicted theoretically and demonstrated using both simulation and experimental data. Experimental data is also used to demonstrate the improvement in performance of a channel estimate-based decision feedback equalizer that uses this post-filtered channel estimate to determine the equalizer coefficients.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2004.828926</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2004-07, Vol.52 (7), p.1901-1914 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSP_2004_828926 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Applied sciences Channels Correlation Covariance matrix Decision feedback equalizers Detection, estimation, filtering, equalization, prediction Equalizers Estimates Exact sciences and technology Filtering algorithms Fluctuations Impulse response Information, signal and communications theory Intersymbol interference Least squares method Multipath channels Oceans Signal and communications theory Signal processing algorithms Signal, noise Subspaces Telecommunications and information theory Underwater acoustics |
title | A channel subspace post-filtering approach to adaptive least-squares estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20channel%20subspace%20post-filtering%20approach%20to%20adaptive%20least-squares%20estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Nadakuditi,%20R.&rft.date=2004-07-01&rft.volume=52&rft.issue=7&rft.spage=1901&rft.epage=1914&rft.pages=1901-1914&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2004.828926&rft_dat=%3Cproquest_RIE%3E2426394741%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883572303&rft_id=info:pmid/&rft_ieee_id=1306645&rfr_iscdi=true |