A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing

In this paper, we focus on yield analysis task where engineers identify the cause of failure from wafer failure map patterns and manufacturing histories. We organize yield analysis task into the following three stages, namely, failure map pattern monitoring, failure cause identification, and failure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on semiconductor manufacturing 2017-11, Vol.30 (4), p.339-344
Hauptverfasser: Nakata, Kouta, Orihara, Ryohei, Mizuoka, Yoshiaki, Takagi, Kentaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 344
container_issue 4
container_start_page 339
container_title IEEE transactions on semiconductor manufacturing
container_volume 30
creator Nakata, Kouta
Orihara, Ryohei
Mizuoka, Yoshiaki
Takagi, Kentaro
description In this paper, we focus on yield analysis task where engineers identify the cause of failure from wafer failure map patterns and manufacturing histories. We organize yield analysis task into the following three stages, namely, failure map pattern monitoring, failure cause identification, and failure recurrence monitoring, and incorporate machine learning and data mining technologies into each stage to support engineers' work. The important point is that big data analysis enables comprehensive and long-term monitoring automation. We make use of fast and scalable methods of clustering and pattern mining and realize daily comprehensive monitoring with massive manufacturing data. We also apply deep learning, which has been an innovative core technology of machine learning in recent years, to classification of wafer failure map patterns, and explore its performance in detail. Finally, these machine learning and data mining techniques are integrated into an automated monitoring system with interfaces familiar to engineers to attain large yield enhancement.
doi_str_mv 10.1109/TSM.2017.2753251
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSM_2017_2753251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8039264</ieee_id><sourcerecordid>1956425148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7e0875fcbece049711a3962876102c5788a19b9eb8737a1c49a6530b72e8c65f3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQQBujiYjeTbw08bzYz217BMSPBOIBPHjadMsslLBdbHdN-PcuwXiay3szk4fQPSUjSol5Wi0XI0aoGjElOZP0Ag2olDpjXMhLNCDaiCyXRF2jm5R2hFAhjBogGONpUx8ibCEk_wN44jfZs21tNrEJ1njRBN820YcNXh5TCzWumoi_POzXeBa2NjioIbTYB7yE2rsmrDvXC3hhQ1dZ13Yn9xZdVXaf4O5vDtHny2w1fcvmH6_v0_E8c1yqNlNAtJKVK8EB6d-j1HKTM61ySpiTSmtLTWmg1IorS50wNpeclIqBdrms-BA9nvceYvPdQWqLXdPF0J8sqJG56LsI3VPkTLnYpBShKg7R1zYeC0qKU8yij1mcYhZ_MXvl4ax4APjHNeGG5YL_AlbEcAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956425148</pqid></control><display><type>article</type><title>A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing</title><source>IEEE Electronic Library (IEL)</source><creator>Nakata, Kouta ; Orihara, Ryohei ; Mizuoka, Yoshiaki ; Takagi, Kentaro</creator><creatorcontrib>Nakata, Kouta ; Orihara, Ryohei ; Mizuoka, Yoshiaki ; Takagi, Kentaro</creatorcontrib><description>In this paper, we focus on yield analysis task where engineers identify the cause of failure from wafer failure map patterns and manufacturing histories. We organize yield analysis task into the following three stages, namely, failure map pattern monitoring, failure cause identification, and failure recurrence monitoring, and incorporate machine learning and data mining technologies into each stage to support engineers' work. The important point is that big data analysis enables comprehensive and long-term monitoring automation. We make use of fast and scalable methods of clustering and pattern mining and realize daily comprehensive monitoring with massive manufacturing data. We also apply deep learning, which has been an innovative core technology of machine learning in recent years, to classification of wafer failure map patterns, and explore its performance in detail. Finally, these machine learning and data mining techniques are integrated into an automated monitoring system with interfaces familiar to engineers to attain large yield enhancement.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2017.2753251</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Automation ; Clustering ; Data analysis ; Data management ; Data mining ; deep learning ; Engineers ; Failure analysis ; Machine learning ; Manufacturing ; Monitoring ; Neural networks ; Pattern analysis ; Pattern recognition ; semiconductor defects ; Semiconductor device manufacture ; Semiconductor device modeling</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2017-11, Vol.30 (4), p.339-344</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7e0875fcbece049711a3962876102c5788a19b9eb8737a1c49a6530b72e8c65f3</citedby><cites>FETCH-LOGICAL-c357t-7e0875fcbece049711a3962876102c5788a19b9eb8737a1c49a6530b72e8c65f3</cites><orcidid>0000-0002-3764-1579 ; 0000-0002-3887-6564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8039264$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Nakata, Kouta</creatorcontrib><creatorcontrib>Orihara, Ryohei</creatorcontrib><creatorcontrib>Mizuoka, Yoshiaki</creatorcontrib><creatorcontrib>Takagi, Kentaro</creatorcontrib><title>A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>In this paper, we focus on yield analysis task where engineers identify the cause of failure from wafer failure map patterns and manufacturing histories. We organize yield analysis task into the following three stages, namely, failure map pattern monitoring, failure cause identification, and failure recurrence monitoring, and incorporate machine learning and data mining technologies into each stage to support engineers' work. The important point is that big data analysis enables comprehensive and long-term monitoring automation. We make use of fast and scalable methods of clustering and pattern mining and realize daily comprehensive monitoring with massive manufacturing data. We also apply deep learning, which has been an innovative core technology of machine learning in recent years, to classification of wafer failure map patterns, and explore its performance in detail. Finally, these machine learning and data mining techniques are integrated into an automated monitoring system with interfaces familiar to engineers to attain large yield enhancement.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data mining</subject><subject>deep learning</subject><subject>Engineers</subject><subject>Failure analysis</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><subject>semiconductor defects</subject><subject>Semiconductor device manufacture</subject><subject>Semiconductor device modeling</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQQBujiYjeTbw08bzYz217BMSPBOIBPHjadMsslLBdbHdN-PcuwXiay3szk4fQPSUjSol5Wi0XI0aoGjElOZP0Ag2olDpjXMhLNCDaiCyXRF2jm5R2hFAhjBogGONpUx8ibCEk_wN44jfZs21tNrEJ1njRBN820YcNXh5TCzWumoi_POzXeBa2NjioIbTYB7yE2rsmrDvXC3hhQ1dZ13Yn9xZdVXaf4O5vDtHny2w1fcvmH6_v0_E8c1yqNlNAtJKVK8EB6d-j1HKTM61ySpiTSmtLTWmg1IorS50wNpeclIqBdrms-BA9nvceYvPdQWqLXdPF0J8sqJG56LsI3VPkTLnYpBShKg7R1zYeC0qKU8yij1mcYhZ_MXvl4ax4APjHNeGG5YL_AlbEcAU</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Nakata, Kouta</creator><creator>Orihara, Ryohei</creator><creator>Mizuoka, Yoshiaki</creator><creator>Takagi, Kentaro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3764-1579</orcidid><orcidid>https://orcid.org/0000-0002-3887-6564</orcidid></search><sort><creationdate>20171101</creationdate><title>A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing</title><author>Nakata, Kouta ; Orihara, Ryohei ; Mizuoka, Yoshiaki ; Takagi, Kentaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7e0875fcbece049711a3962876102c5788a19b9eb8737a1c49a6530b72e8c65f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data mining</topic><topic>deep learning</topic><topic>Engineers</topic><topic>Failure analysis</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><topic>semiconductor defects</topic><topic>Semiconductor device manufacture</topic><topic>Semiconductor device modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakata, Kouta</creatorcontrib><creatorcontrib>Orihara, Ryohei</creatorcontrib><creatorcontrib>Mizuoka, Yoshiaki</creatorcontrib><creatorcontrib>Takagi, Kentaro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakata, Kouta</au><au>Orihara, Ryohei</au><au>Mizuoka, Yoshiaki</au><au>Takagi, Kentaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>30</volume><issue>4</issue><spage>339</spage><epage>344</epage><pages>339-344</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>In this paper, we focus on yield analysis task where engineers identify the cause of failure from wafer failure map patterns and manufacturing histories. We organize yield analysis task into the following three stages, namely, failure map pattern monitoring, failure cause identification, and failure recurrence monitoring, and incorporate machine learning and data mining technologies into each stage to support engineers' work. The important point is that big data analysis enables comprehensive and long-term monitoring automation. We make use of fast and scalable methods of clustering and pattern mining and realize daily comprehensive monitoring with massive manufacturing data. We also apply deep learning, which has been an innovative core technology of machine learning in recent years, to classification of wafer failure map patterns, and explore its performance in detail. Finally, these machine learning and data mining techniques are integrated into an automated monitoring system with interfaces familiar to engineers to attain large yield enhancement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSM.2017.2753251</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3764-1579</orcidid><orcidid>https://orcid.org/0000-0002-3887-6564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-6507
ispartof IEEE transactions on semiconductor manufacturing, 2017-11, Vol.30 (4), p.339-344
issn 0894-6507
1558-2345
language eng
recordid cdi_crossref_primary_10_1109_TSM_2017_2753251
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Automation
Clustering
Data analysis
Data management
Data mining
deep learning
Engineers
Failure analysis
Machine learning
Manufacturing
Monitoring
Neural networks
Pattern analysis
Pattern recognition
semiconductor defects
Semiconductor device manufacture
Semiconductor device modeling
title A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Big-Data-Based%20Monitoring%20System%20for%20Yield%20Enhancement%20in%20Semiconductor%20Manufacturing&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Nakata,%20Kouta&rft.date=2017-11-01&rft.volume=30&rft.issue=4&rft.spage=339&rft.epage=344&rft.pages=339-344&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2017.2753251&rft_dat=%3Cproquest_cross%3E1956425148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956425148&rft_id=info:pmid/&rft_ieee_id=8039264&rfr_iscdi=true