A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing
In this paper, we focus on yield analysis task where engineers identify the cause of failure from wafer failure map patterns and manufacturing histories. We organize yield analysis task into the following three stages, namely, failure map pattern monitoring, failure cause identification, and failure...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on semiconductor manufacturing 2017-11, Vol.30 (4), p.339-344 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 344 |
---|---|
container_issue | 4 |
container_start_page | 339 |
container_title | IEEE transactions on semiconductor manufacturing |
container_volume | 30 |
creator | Nakata, Kouta Orihara, Ryohei Mizuoka, Yoshiaki Takagi, Kentaro |
description | In this paper, we focus on yield analysis task where engineers identify the cause of failure from wafer failure map patterns and manufacturing histories. We organize yield analysis task into the following three stages, namely, failure map pattern monitoring, failure cause identification, and failure recurrence monitoring, and incorporate machine learning and data mining technologies into each stage to support engineers' work. The important point is that big data analysis enables comprehensive and long-term monitoring automation. We make use of fast and scalable methods of clustering and pattern mining and realize daily comprehensive monitoring with massive manufacturing data. We also apply deep learning, which has been an innovative core technology of machine learning in recent years, to classification of wafer failure map patterns, and explore its performance in detail. Finally, these machine learning and data mining techniques are integrated into an automated monitoring system with interfaces familiar to engineers to attain large yield enhancement. |
doi_str_mv | 10.1109/TSM.2017.2753251 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSM_2017_2753251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8039264</ieee_id><sourcerecordid>1956425148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7e0875fcbece049711a3962876102c5788a19b9eb8737a1c49a6530b72e8c65f3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQQBujiYjeTbw08bzYz217BMSPBOIBPHjadMsslLBdbHdN-PcuwXiay3szk4fQPSUjSol5Wi0XI0aoGjElOZP0Ag2olDpjXMhLNCDaiCyXRF2jm5R2hFAhjBogGONpUx8ibCEk_wN44jfZs21tNrEJ1njRBN820YcNXh5TCzWumoi_POzXeBa2NjioIbTYB7yE2rsmrDvXC3hhQ1dZ13Yn9xZdVXaf4O5vDtHny2w1fcvmH6_v0_E8c1yqNlNAtJKVK8EB6d-j1HKTM61ySpiTSmtLTWmg1IorS50wNpeclIqBdrms-BA9nvceYvPdQWqLXdPF0J8sqJG56LsI3VPkTLnYpBShKg7R1zYeC0qKU8yij1mcYhZ_MXvl4ax4APjHNeGG5YL_AlbEcAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956425148</pqid></control><display><type>article</type><title>A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing</title><source>IEEE Electronic Library (IEL)</source><creator>Nakata, Kouta ; Orihara, Ryohei ; Mizuoka, Yoshiaki ; Takagi, Kentaro</creator><creatorcontrib>Nakata, Kouta ; Orihara, Ryohei ; Mizuoka, Yoshiaki ; Takagi, Kentaro</creatorcontrib><description>In this paper, we focus on yield analysis task where engineers identify the cause of failure from wafer failure map patterns and manufacturing histories. We organize yield analysis task into the following three stages, namely, failure map pattern monitoring, failure cause identification, and failure recurrence monitoring, and incorporate machine learning and data mining technologies into each stage to support engineers' work. The important point is that big data analysis enables comprehensive and long-term monitoring automation. We make use of fast and scalable methods of clustering and pattern mining and realize daily comprehensive monitoring with massive manufacturing data. We also apply deep learning, which has been an innovative core technology of machine learning in recent years, to classification of wafer failure map patterns, and explore its performance in detail. Finally, these machine learning and data mining techniques are integrated into an automated monitoring system with interfaces familiar to engineers to attain large yield enhancement.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2017.2753251</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Automation ; Clustering ; Data analysis ; Data management ; Data mining ; deep learning ; Engineers ; Failure analysis ; Machine learning ; Manufacturing ; Monitoring ; Neural networks ; Pattern analysis ; Pattern recognition ; semiconductor defects ; Semiconductor device manufacture ; Semiconductor device modeling</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2017-11, Vol.30 (4), p.339-344</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7e0875fcbece049711a3962876102c5788a19b9eb8737a1c49a6530b72e8c65f3</citedby><cites>FETCH-LOGICAL-c357t-7e0875fcbece049711a3962876102c5788a19b9eb8737a1c49a6530b72e8c65f3</cites><orcidid>0000-0002-3764-1579 ; 0000-0002-3887-6564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8039264$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Nakata, Kouta</creatorcontrib><creatorcontrib>Orihara, Ryohei</creatorcontrib><creatorcontrib>Mizuoka, Yoshiaki</creatorcontrib><creatorcontrib>Takagi, Kentaro</creatorcontrib><title>A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>In this paper, we focus on yield analysis task where engineers identify the cause of failure from wafer failure map patterns and manufacturing histories. We organize yield analysis task into the following three stages, namely, failure map pattern monitoring, failure cause identification, and failure recurrence monitoring, and incorporate machine learning and data mining technologies into each stage to support engineers' work. The important point is that big data analysis enables comprehensive and long-term monitoring automation. We make use of fast and scalable methods of clustering and pattern mining and realize daily comprehensive monitoring with massive manufacturing data. We also apply deep learning, which has been an innovative core technology of machine learning in recent years, to classification of wafer failure map patterns, and explore its performance in detail. Finally, these machine learning and data mining techniques are integrated into an automated monitoring system with interfaces familiar to engineers to attain large yield enhancement.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Data management</subject><subject>Data mining</subject><subject>deep learning</subject><subject>Engineers</subject><subject>Failure analysis</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><subject>semiconductor defects</subject><subject>Semiconductor device manufacture</subject><subject>Semiconductor device modeling</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQQBujiYjeTbw08bzYz217BMSPBOIBPHjadMsslLBdbHdN-PcuwXiay3szk4fQPSUjSol5Wi0XI0aoGjElOZP0Ag2olDpjXMhLNCDaiCyXRF2jm5R2hFAhjBogGONpUx8ibCEk_wN44jfZs21tNrEJ1njRBN820YcNXh5TCzWumoi_POzXeBa2NjioIbTYB7yE2rsmrDvXC3hhQ1dZ13Yn9xZdVXaf4O5vDtHny2w1fcvmH6_v0_E8c1yqNlNAtJKVK8EB6d-j1HKTM61ySpiTSmtLTWmg1IorS50wNpeclIqBdrms-BA9nvceYvPdQWqLXdPF0J8sqJG56LsI3VPkTLnYpBShKg7R1zYeC0qKU8yij1mcYhZ_MXvl4ax4APjHNeGG5YL_AlbEcAU</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Nakata, Kouta</creator><creator>Orihara, Ryohei</creator><creator>Mizuoka, Yoshiaki</creator><creator>Takagi, Kentaro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3764-1579</orcidid><orcidid>https://orcid.org/0000-0002-3887-6564</orcidid></search><sort><creationdate>20171101</creationdate><title>A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing</title><author>Nakata, Kouta ; Orihara, Ryohei ; Mizuoka, Yoshiaki ; Takagi, Kentaro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7e0875fcbece049711a3962876102c5788a19b9eb8737a1c49a6530b72e8c65f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Data management</topic><topic>Data mining</topic><topic>deep learning</topic><topic>Engineers</topic><topic>Failure analysis</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><topic>semiconductor defects</topic><topic>Semiconductor device manufacture</topic><topic>Semiconductor device modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakata, Kouta</creatorcontrib><creatorcontrib>Orihara, Ryohei</creatorcontrib><creatorcontrib>Mizuoka, Yoshiaki</creatorcontrib><creatorcontrib>Takagi, Kentaro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakata, Kouta</au><au>Orihara, Ryohei</au><au>Mizuoka, Yoshiaki</au><au>Takagi, Kentaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>30</volume><issue>4</issue><spage>339</spage><epage>344</epage><pages>339-344</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>In this paper, we focus on yield analysis task where engineers identify the cause of failure from wafer failure map patterns and manufacturing histories. We organize yield analysis task into the following three stages, namely, failure map pattern monitoring, failure cause identification, and failure recurrence monitoring, and incorporate machine learning and data mining technologies into each stage to support engineers' work. The important point is that big data analysis enables comprehensive and long-term monitoring automation. We make use of fast and scalable methods of clustering and pattern mining and realize daily comprehensive monitoring with massive manufacturing data. We also apply deep learning, which has been an innovative core technology of machine learning in recent years, to classification of wafer failure map patterns, and explore its performance in detail. Finally, these machine learning and data mining techniques are integrated into an automated monitoring system with interfaces familiar to engineers to attain large yield enhancement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSM.2017.2753251</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3764-1579</orcidid><orcidid>https://orcid.org/0000-0002-3887-6564</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-6507 |
ispartof | IEEE transactions on semiconductor manufacturing, 2017-11, Vol.30 (4), p.339-344 |
issn | 0894-6507 1558-2345 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSM_2017_2753251 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Automation Clustering Data analysis Data management Data mining deep learning Engineers Failure analysis Machine learning Manufacturing Monitoring Neural networks Pattern analysis Pattern recognition semiconductor defects Semiconductor device manufacture Semiconductor device modeling |
title | A Comprehensive Big-Data-Based Monitoring System for Yield Enhancement in Semiconductor Manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Big-Data-Based%20Monitoring%20System%20for%20Yield%20Enhancement%20in%20Semiconductor%20Manufacturing&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Nakata,%20Kouta&rft.date=2017-11-01&rft.volume=30&rft.issue=4&rft.spage=339&rft.epage=344&rft.pages=339-344&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2017.2753251&rft_dat=%3Cproquest_cross%3E1956425148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956425148&rft_id=info:pmid/&rft_ieee_id=8039264&rfr_iscdi=true |