Learning Control for Networked Stochastic Systems With Random Fading Communication

The learning control strategy is studied for networked stochastic systems, where the output and input data are transmitted through multiple independent fading channels. The traditional P-type learning control scheme is revised according to the specific fading positions, where the constant learning g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2022-06, Vol.52 (6), p.3659-3670
Hauptverfasser: Shen, Dong, Qu, Ganggui, Song, Qijiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3670
container_issue 6
container_start_page 3659
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 52
creator Shen, Dong
Qu, Ganggui
Song, Qijiang
description The learning control strategy is studied for networked stochastic systems, where the output and input data are transmitted through multiple independent fading channels. The traditional P-type learning control scheme is revised according to the specific fading positions, where the constant learning gain is replaced by a variable one to suppress the effect of various uncertainties. Strong convergence of the proposed scheme is established under random fading phenomena and system noise. The input error is shown convergent to zero as the cycle number increases. Two numerical examples demonstrate the applications of the proposed scheme.
doi_str_mv 10.1109/TSMC.2021.3070848
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMC_2021_3070848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9405360</ieee_id><sourcerecordid>2665841160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ac289bb491cfc3c8db1943827bca919cdb73774465bbb06cfa53ecb309e93bfc3</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOOZ-gHgT8LozX02TSylOhamwTbwMSZq6zrWZSYbs39vRsav3XJznvPAAcIvRFGMkH1bLt3JKEMFTigokmLgAI4K5yAih5PKcMb8Gkxg3CCFMBKeIj8Bi7nTomu4blr5LwW9h7QN8d-nPhx9XwWXydq1jaixcHmJybYRfTVrDhe4q38KZrga2bfddY3VqfHcDrmq9jW5yumPwOXtalS_Z_OP5tXycZ5ZImjJtiZDGMIltbakVlcGSUUEKY7XE0lamoEXBGM-NMYjbWufUWUORdJKaHhmD-2F3F_zv3sWkNn4fuv6lIpzngmHMUd_CQ8sGH2NwtdqFptXhoDBSR3vqaE8d7amTvZ65G5jGOXfuS4Zy2i_-A7xFa-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2665841160</pqid></control><display><type>article</type><title>Learning Control for Networked Stochastic Systems With Random Fading Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Dong ; Qu, Ganggui ; Song, Qijiang</creator><creatorcontrib>Shen, Dong ; Qu, Ganggui ; Song, Qijiang</creatorcontrib><description>The learning control strategy is studied for networked stochastic systems, where the output and input data are transmitted through multiple independent fading channels. The traditional P-type learning control scheme is revised according to the specific fading positions, where the constant learning gain is replaced by a variable one to suppress the effect of various uncertainties. Strong convergence of the proposed scheme is established under random fading phenomena and system noise. The input error is shown convergent to zero as the cycle number increases. Two numerical examples demonstrate the applications of the proposed scheme.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2021.3070848</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additives ; Almost sure convergence ; Convergence ; Fading ; Fading channels ; Indexes ; Learning ; learning control ; mean-square convergence ; networked stochastic systems ; Stochastic processes ; Stochastic systems ; Target tracking ; Uncertainty</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2022-06, Vol.52 (6), p.3659-3670</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ac289bb491cfc3c8db1943827bca919cdb73774465bbb06cfa53ecb309e93bfc3</citedby><cites>FETCH-LOGICAL-c293t-ac289bb491cfc3c8db1943827bca919cdb73774465bbb06cfa53ecb309e93bfc3</cites><orcidid>0000-0003-1063-1351 ; 0000-0002-9276-1290 ; 0000-0002-4242-4288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9405360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9405360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Dong</creatorcontrib><creatorcontrib>Qu, Ganggui</creatorcontrib><creatorcontrib>Song, Qijiang</creatorcontrib><title>Learning Control for Networked Stochastic Systems With Random Fading Communication</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>The learning control strategy is studied for networked stochastic systems, where the output and input data are transmitted through multiple independent fading channels. The traditional P-type learning control scheme is revised according to the specific fading positions, where the constant learning gain is replaced by a variable one to suppress the effect of various uncertainties. Strong convergence of the proposed scheme is established under random fading phenomena and system noise. The input error is shown convergent to zero as the cycle number increases. Two numerical examples demonstrate the applications of the proposed scheme.</description><subject>Additives</subject><subject>Almost sure convergence</subject><subject>Convergence</subject><subject>Fading</subject><subject>Fading channels</subject><subject>Indexes</subject><subject>Learning</subject><subject>learning control</subject><subject>mean-square convergence</subject><subject>networked stochastic systems</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Target tracking</subject><subject>Uncertainty</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYhYMoOOZ-gHgT8LozX02TSylOhamwTbwMSZq6zrWZSYbs39vRsav3XJznvPAAcIvRFGMkH1bLt3JKEMFTigokmLgAI4K5yAih5PKcMb8Gkxg3CCFMBKeIj8Bi7nTomu4blr5LwW9h7QN8d-nPhx9XwWXydq1jaixcHmJybYRfTVrDhe4q38KZrga2bfddY3VqfHcDrmq9jW5yumPwOXtalS_Z_OP5tXycZ5ZImjJtiZDGMIltbakVlcGSUUEKY7XE0lamoEXBGM-NMYjbWufUWUORdJKaHhmD-2F3F_zv3sWkNn4fuv6lIpzngmHMUd_CQ8sGH2NwtdqFptXhoDBSR3vqaE8d7amTvZ65G5jGOXfuS4Zy2i_-A7xFa-g</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Shen, Dong</creator><creator>Qu, Ganggui</creator><creator>Song, Qijiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1063-1351</orcidid><orcidid>https://orcid.org/0000-0002-9276-1290</orcidid><orcidid>https://orcid.org/0000-0002-4242-4288</orcidid></search><sort><creationdate>202206</creationdate><title>Learning Control for Networked Stochastic Systems With Random Fading Communication</title><author>Shen, Dong ; Qu, Ganggui ; Song, Qijiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ac289bb491cfc3c8db1943827bca919cdb73774465bbb06cfa53ecb309e93bfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Almost sure convergence</topic><topic>Convergence</topic><topic>Fading</topic><topic>Fading channels</topic><topic>Indexes</topic><topic>Learning</topic><topic>learning control</topic><topic>mean-square convergence</topic><topic>networked stochastic systems</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Target tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Dong</creatorcontrib><creatorcontrib>Qu, Ganggui</creatorcontrib><creatorcontrib>Song, Qijiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Dong</au><au>Qu, Ganggui</au><au>Song, Qijiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Control for Networked Stochastic Systems With Random Fading Communication</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2022-06</date><risdate>2022</risdate><volume>52</volume><issue>6</issue><spage>3659</spage><epage>3670</epage><pages>3659-3670</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>The learning control strategy is studied for networked stochastic systems, where the output and input data are transmitted through multiple independent fading channels. The traditional P-type learning control scheme is revised according to the specific fading positions, where the constant learning gain is replaced by a variable one to suppress the effect of various uncertainties. Strong convergence of the proposed scheme is established under random fading phenomena and system noise. The input error is shown convergent to zero as the cycle number increases. Two numerical examples demonstrate the applications of the proposed scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2021.3070848</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1063-1351</orcidid><orcidid>https://orcid.org/0000-0002-9276-1290</orcidid><orcidid>https://orcid.org/0000-0002-4242-4288</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2022-06, Vol.52 (6), p.3659-3670
issn 2168-2216
2168-2232
language eng
recordid cdi_crossref_primary_10_1109_TSMC_2021_3070848
source IEEE Electronic Library (IEL)
subjects Additives
Almost sure convergence
Convergence
Fading
Fading channels
Indexes
Learning
learning control
mean-square convergence
networked stochastic systems
Stochastic processes
Stochastic systems
Target tracking
Uncertainty
title Learning Control for Networked Stochastic Systems With Random Fading Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Control%20for%20Networked%20Stochastic%20Systems%20With%20Random%20Fading%20Communication&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Shen,%20Dong&rft.date=2022-06&rft.volume=52&rft.issue=6&rft.spage=3659&rft.epage=3670&rft.pages=3659-3670&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2021.3070848&rft_dat=%3Cproquest_RIE%3E2665841160%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2665841160&rft_id=info:pmid/&rft_ieee_id=9405360&rfr_iscdi=true