Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization

This article focuses on trajectory planning of the free-floating space manipulator (FFSM), so that the end-effector trajectory tracking and the spacecraft attitude stabilization are achieved simultaneously. A novel spacecraft attitude stabilization constraint with the time-decaying term and the time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2021-12, Vol.51 (12), p.7346-7362
Hauptverfasser: Lu, Xuhui, Jia, Yingmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7362
container_issue 12
container_start_page 7346
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 51
creator Lu, Xuhui
Jia, Yingmin
description This article focuses on trajectory planning of the free-floating space manipulator (FFSM), so that the end-effector trajectory tracking and the spacecraft attitude stabilization are achieved simultaneously. A novel spacecraft attitude stabilization constraint with the time-decaying term and the time-varying gaining parameter is constructed, such that not only is the designed constraint satisfied at the initial instant but also the spacecraft attitude can converge into the small neighborhood of the desired attitude. Two constraints on joint accelerations are constructed, such that the constraints on joint angles/velocities/accelerations and the requirement on the end-effector trajectory tracking are both satisfied. Besides, for the cost function with the control efforts and the manipulability optimization, it can be equivalently converted as a strictly convex quadratic function. Correspondingly, the trajectory planning problem of the FFSM at the acceleration level can be formulated as a constrained convex quadratic programming problem. The proposed trajectory planning algorithm avoids the dynamic singularity of the FFSM. The effectiveness of the proposed algorithm is validated by the simulation results.
doi_str_mv 10.1109/TSMC.2020.2966859
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMC_2020_2966859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8994171</ieee_id><sourcerecordid>2599206159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bf3ad7bce5205478dd48367ddcfc4cb7296fdc3f0fb48df6c8216b20c5644cfd3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-APGy4Dl1P5LN7rEUq0JLhVY8Lpv90C1pEjebQz34201I6WmGd953hnkAuMdojjEST_vdZjkniKA5EYzxTFyBCcGMJ4RQcn3pMbsFs7Y9IIQw4YwiNgF_-6AOVsc6nOB7qarKV1-wdnAVrE1WZa3iIOwapS3cqMo3Xal6cws_ffwedR2Ui3ARo4-dsXAXVeFL_9sn6wqqylxygxxPcNtEfzzP78CNU2VrZ-c6BR-r5_3yNVlvX96Wi3WiiaAxKRxVJi-0zQjK0pwbk3LKcmO006ku8v5tZzR1yBUpN45p3j9bEKQzlqbaGToFj-PeJtQ_nW2jPNRdqPqTkmRCEMRwJnoXHl061G0brJNN8EcVThIjOZCWA2k5kJZn0n3mYcx4a-3Fz4VIcY7pP-qUfV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599206159</pqid></control><display><type>article</type><title>Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Xuhui ; Jia, Yingmin</creator><creatorcontrib>Lu, Xuhui ; Jia, Yingmin</creatorcontrib><description>This article focuses on trajectory planning of the free-floating space manipulator (FFSM), so that the end-effector trajectory tracking and the spacecraft attitude stabilization are achieved simultaneously. A novel spacecraft attitude stabilization constraint with the time-decaying term and the time-varying gaining parameter is constructed, such that not only is the designed constraint satisfied at the initial instant but also the spacecraft attitude can converge into the small neighborhood of the desired attitude. Two constraints on joint accelerations are constructed, such that the constraints on joint angles/velocities/accelerations and the requirement on the end-effector trajectory tracking are both satisfied. Besides, for the cost function with the control efforts and the manipulability optimization, it can be equivalently converted as a strictly convex quadratic function. Correspondingly, the trajectory planning problem of the FFSM at the acceleration level can be formulated as a constrained convex quadratic programming problem. The proposed trajectory planning algorithm avoids the dynamic singularity of the FFSM. The effectiveness of the proposed algorithm is validated by the simulation results.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2020.2966859</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Attitude stability ; Constraints ; Convex quadratic programming ; Cost function ; End effectors ; manipulability optimization ; Manipulator dynamics ; Manipulators ; Optimization ; Quadratic equations ; Quadratic programming ; Space vehicles ; Spacecraft attitude control ; spacecraft attitude stabilization ; Spacecraft tracking ; Trajectory ; Trajectory planning ; trajectory planning of space manipulator</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2021-12, Vol.51 (12), p.7346-7362</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bf3ad7bce5205478dd48367ddcfc4cb7296fdc3f0fb48df6c8216b20c5644cfd3</citedby><cites>FETCH-LOGICAL-c293t-bf3ad7bce5205478dd48367ddcfc4cb7296fdc3f0fb48df6c8216b20c5644cfd3</cites><orcidid>0000-0002-6212-9796 ; 0000-0002-9082-5713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8994171$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8994171$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Xuhui</creatorcontrib><creatorcontrib>Jia, Yingmin</creatorcontrib><title>Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>This article focuses on trajectory planning of the free-floating space manipulator (FFSM), so that the end-effector trajectory tracking and the spacecraft attitude stabilization are achieved simultaneously. A novel spacecraft attitude stabilization constraint with the time-decaying term and the time-varying gaining parameter is constructed, such that not only is the designed constraint satisfied at the initial instant but also the spacecraft attitude can converge into the small neighborhood of the desired attitude. Two constraints on joint accelerations are constructed, such that the constraints on joint angles/velocities/accelerations and the requirement on the end-effector trajectory tracking are both satisfied. Besides, for the cost function with the control efforts and the manipulability optimization, it can be equivalently converted as a strictly convex quadratic function. Correspondingly, the trajectory planning problem of the FFSM at the acceleration level can be formulated as a constrained convex quadratic programming problem. The proposed trajectory planning algorithm avoids the dynamic singularity of the FFSM. The effectiveness of the proposed algorithm is validated by the simulation results.</description><subject>Algorithms</subject><subject>Attitude stability</subject><subject>Constraints</subject><subject>Convex quadratic programming</subject><subject>Cost function</subject><subject>End effectors</subject><subject>manipulability optimization</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>Optimization</subject><subject>Quadratic equations</subject><subject>Quadratic programming</subject><subject>Space vehicles</subject><subject>Spacecraft attitude control</subject><subject>spacecraft attitude stabilization</subject><subject>Spacecraft tracking</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><subject>trajectory planning of space manipulator</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsNT-APGy4Dl1P5LN7rEUq0JLhVY8Lpv90C1pEjebQz34201I6WmGd953hnkAuMdojjEST_vdZjkniKA5EYzxTFyBCcGMJ4RQcn3pMbsFs7Y9IIQw4YwiNgF_-6AOVsc6nOB7qarKV1-wdnAVrE1WZa3iIOwapS3cqMo3Xal6cws_ffwedR2Ui3ARo4-dsXAXVeFL_9sn6wqqylxygxxPcNtEfzzP78CNU2VrZ-c6BR-r5_3yNVlvX96Wi3WiiaAxKRxVJi-0zQjK0pwbk3LKcmO006ku8v5tZzR1yBUpN45p3j9bEKQzlqbaGToFj-PeJtQ_nW2jPNRdqPqTkmRCEMRwJnoXHl061G0brJNN8EcVThIjOZCWA2k5kJZn0n3mYcx4a-3Fz4VIcY7pP-qUfV8</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lu, Xuhui</creator><creator>Jia, Yingmin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6212-9796</orcidid><orcidid>https://orcid.org/0000-0002-9082-5713</orcidid></search><sort><creationdate>20211201</creationdate><title>Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization</title><author>Lu, Xuhui ; Jia, Yingmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bf3ad7bce5205478dd48367ddcfc4cb7296fdc3f0fb48df6c8216b20c5644cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Attitude stability</topic><topic>Constraints</topic><topic>Convex quadratic programming</topic><topic>Cost function</topic><topic>End effectors</topic><topic>manipulability optimization</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>Optimization</topic><topic>Quadratic equations</topic><topic>Quadratic programming</topic><topic>Space vehicles</topic><topic>Spacecraft attitude control</topic><topic>spacecraft attitude stabilization</topic><topic>Spacecraft tracking</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><topic>trajectory planning of space manipulator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xuhui</creatorcontrib><creatorcontrib>Jia, Yingmin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Xuhui</au><au>Jia, Yingmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>51</volume><issue>12</issue><spage>7346</spage><epage>7362</epage><pages>7346-7362</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>This article focuses on trajectory planning of the free-floating space manipulator (FFSM), so that the end-effector trajectory tracking and the spacecraft attitude stabilization are achieved simultaneously. A novel spacecraft attitude stabilization constraint with the time-decaying term and the time-varying gaining parameter is constructed, such that not only is the designed constraint satisfied at the initial instant but also the spacecraft attitude can converge into the small neighborhood of the desired attitude. Two constraints on joint accelerations are constructed, such that the constraints on joint angles/velocities/accelerations and the requirement on the end-effector trajectory tracking are both satisfied. Besides, for the cost function with the control efforts and the manipulability optimization, it can be equivalently converted as a strictly convex quadratic function. Correspondingly, the trajectory planning problem of the FFSM at the acceleration level can be formulated as a constrained convex quadratic programming problem. The proposed trajectory planning algorithm avoids the dynamic singularity of the FFSM. The effectiveness of the proposed algorithm is validated by the simulation results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2020.2966859</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6212-9796</orcidid><orcidid>https://orcid.org/0000-0002-9082-5713</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2021-12, Vol.51 (12), p.7346-7362
issn 2168-2216
2168-2232
language eng
recordid cdi_crossref_primary_10_1109_TSMC_2020_2966859
source IEEE Electronic Library (IEL)
subjects Algorithms
Attitude stability
Constraints
Convex quadratic programming
Cost function
End effectors
manipulability optimization
Manipulator dynamics
Manipulators
Optimization
Quadratic equations
Quadratic programming
Space vehicles
Spacecraft attitude control
spacecraft attitude stabilization
Spacecraft tracking
Trajectory
Trajectory planning
trajectory planning of space manipulator
title Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20Planning%20of%20Free-Floating%20Space%20Manipulators%20With%20Spacecraft%20Attitude%20Stabilization%20and%20Manipulability%20Optimization&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Lu,%20Xuhui&rft.date=2021-12-01&rft.volume=51&rft.issue=12&rft.spage=7346&rft.epage=7362&rft.pages=7346-7362&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2020.2966859&rft_dat=%3Cproquest_RIE%3E2599206159%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599206159&rft_id=info:pmid/&rft_ieee_id=8994171&rfr_iscdi=true