Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization
This article focuses on trajectory planning of the free-floating space manipulator (FFSM), so that the end-effector trajectory tracking and the spacecraft attitude stabilization are achieved simultaneously. A novel spacecraft attitude stabilization constraint with the time-decaying term and the time...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2021-12, Vol.51 (12), p.7346-7362 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7362 |
---|---|
container_issue | 12 |
container_start_page | 7346 |
container_title | IEEE transactions on systems, man, and cybernetics. Systems |
container_volume | 51 |
creator | Lu, Xuhui Jia, Yingmin |
description | This article focuses on trajectory planning of the free-floating space manipulator (FFSM), so that the end-effector trajectory tracking and the spacecraft attitude stabilization are achieved simultaneously. A novel spacecraft attitude stabilization constraint with the time-decaying term and the time-varying gaining parameter is constructed, such that not only is the designed constraint satisfied at the initial instant but also the spacecraft attitude can converge into the small neighborhood of the desired attitude. Two constraints on joint accelerations are constructed, such that the constraints on joint angles/velocities/accelerations and the requirement on the end-effector trajectory tracking are both satisfied. Besides, for the cost function with the control efforts and the manipulability optimization, it can be equivalently converted as a strictly convex quadratic function. Correspondingly, the trajectory planning problem of the FFSM at the acceleration level can be formulated as a constrained convex quadratic programming problem. The proposed trajectory planning algorithm avoids the dynamic singularity of the FFSM. The effectiveness of the proposed algorithm is validated by the simulation results. |
doi_str_mv | 10.1109/TSMC.2020.2966859 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMC_2020_2966859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8994171</ieee_id><sourcerecordid>2599206159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bf3ad7bce5205478dd48367ddcfc4cb7296fdc3f0fb48df6c8216b20c5644cfd3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsNT-APGy4Dl1P5LN7rEUq0JLhVY8Lpv90C1pEjebQz34201I6WmGd953hnkAuMdojjEST_vdZjkniKA5EYzxTFyBCcGMJ4RQcn3pMbsFs7Y9IIQw4YwiNgF_-6AOVsc6nOB7qarKV1-wdnAVrE1WZa3iIOwapS3cqMo3Xal6cws_ffwedR2Ui3ARo4-dsXAXVeFL_9sn6wqqylxygxxPcNtEfzzP78CNU2VrZ-c6BR-r5_3yNVlvX96Wi3WiiaAxKRxVJi-0zQjK0pwbk3LKcmO006ku8v5tZzR1yBUpN45p3j9bEKQzlqbaGToFj-PeJtQ_nW2jPNRdqPqTkmRCEMRwJnoXHl061G0brJNN8EcVThIjOZCWA2k5kJZn0n3mYcx4a-3Fz4VIcY7pP-qUfV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599206159</pqid></control><display><type>article</type><title>Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Xuhui ; Jia, Yingmin</creator><creatorcontrib>Lu, Xuhui ; Jia, Yingmin</creatorcontrib><description>This article focuses on trajectory planning of the free-floating space manipulator (FFSM), so that the end-effector trajectory tracking and the spacecraft attitude stabilization are achieved simultaneously. A novel spacecraft attitude stabilization constraint with the time-decaying term and the time-varying gaining parameter is constructed, such that not only is the designed constraint satisfied at the initial instant but also the spacecraft attitude can converge into the small neighborhood of the desired attitude. Two constraints on joint accelerations are constructed, such that the constraints on joint angles/velocities/accelerations and the requirement on the end-effector trajectory tracking are both satisfied. Besides, for the cost function with the control efforts and the manipulability optimization, it can be equivalently converted as a strictly convex quadratic function. Correspondingly, the trajectory planning problem of the FFSM at the acceleration level can be formulated as a constrained convex quadratic programming problem. The proposed trajectory planning algorithm avoids the dynamic singularity of the FFSM. The effectiveness of the proposed algorithm is validated by the simulation results.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2020.2966859</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Attitude stability ; Constraints ; Convex quadratic programming ; Cost function ; End effectors ; manipulability optimization ; Manipulator dynamics ; Manipulators ; Optimization ; Quadratic equations ; Quadratic programming ; Space vehicles ; Spacecraft attitude control ; spacecraft attitude stabilization ; Spacecraft tracking ; Trajectory ; Trajectory planning ; trajectory planning of space manipulator</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2021-12, Vol.51 (12), p.7346-7362</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bf3ad7bce5205478dd48367ddcfc4cb7296fdc3f0fb48df6c8216b20c5644cfd3</citedby><cites>FETCH-LOGICAL-c293t-bf3ad7bce5205478dd48367ddcfc4cb7296fdc3f0fb48df6c8216b20c5644cfd3</cites><orcidid>0000-0002-6212-9796 ; 0000-0002-9082-5713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8994171$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8994171$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Xuhui</creatorcontrib><creatorcontrib>Jia, Yingmin</creatorcontrib><title>Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>This article focuses on trajectory planning of the free-floating space manipulator (FFSM), so that the end-effector trajectory tracking and the spacecraft attitude stabilization are achieved simultaneously. A novel spacecraft attitude stabilization constraint with the time-decaying term and the time-varying gaining parameter is constructed, such that not only is the designed constraint satisfied at the initial instant but also the spacecraft attitude can converge into the small neighborhood of the desired attitude. Two constraints on joint accelerations are constructed, such that the constraints on joint angles/velocities/accelerations and the requirement on the end-effector trajectory tracking are both satisfied. Besides, for the cost function with the control efforts and the manipulability optimization, it can be equivalently converted as a strictly convex quadratic function. Correspondingly, the trajectory planning problem of the FFSM at the acceleration level can be formulated as a constrained convex quadratic programming problem. The proposed trajectory planning algorithm avoids the dynamic singularity of the FFSM. The effectiveness of the proposed algorithm is validated by the simulation results.</description><subject>Algorithms</subject><subject>Attitude stability</subject><subject>Constraints</subject><subject>Convex quadratic programming</subject><subject>Cost function</subject><subject>End effectors</subject><subject>manipulability optimization</subject><subject>Manipulator dynamics</subject><subject>Manipulators</subject><subject>Optimization</subject><subject>Quadratic equations</subject><subject>Quadratic programming</subject><subject>Space vehicles</subject><subject>Spacecraft attitude control</subject><subject>spacecraft attitude stabilization</subject><subject>Spacecraft tracking</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><subject>trajectory planning of space manipulator</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsNT-APGy4Dl1P5LN7rEUq0JLhVY8Lpv90C1pEjebQz34201I6WmGd953hnkAuMdojjEST_vdZjkniKA5EYzxTFyBCcGMJ4RQcn3pMbsFs7Y9IIQw4YwiNgF_-6AOVsc6nOB7qarKV1-wdnAVrE1WZa3iIOwapS3cqMo3Xal6cws_ffwedR2Ui3ARo4-dsXAXVeFL_9sn6wqqylxygxxPcNtEfzzP78CNU2VrZ-c6BR-r5_3yNVlvX96Wi3WiiaAxKRxVJi-0zQjK0pwbk3LKcmO006ku8v5tZzR1yBUpN45p3j9bEKQzlqbaGToFj-PeJtQ_nW2jPNRdqPqTkmRCEMRwJnoXHl061G0brJNN8EcVThIjOZCWA2k5kJZn0n3mYcx4a-3Fz4VIcY7pP-qUfV8</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lu, Xuhui</creator><creator>Jia, Yingmin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6212-9796</orcidid><orcidid>https://orcid.org/0000-0002-9082-5713</orcidid></search><sort><creationdate>20211201</creationdate><title>Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization</title><author>Lu, Xuhui ; Jia, Yingmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bf3ad7bce5205478dd48367ddcfc4cb7296fdc3f0fb48df6c8216b20c5644cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Attitude stability</topic><topic>Constraints</topic><topic>Convex quadratic programming</topic><topic>Cost function</topic><topic>End effectors</topic><topic>manipulability optimization</topic><topic>Manipulator dynamics</topic><topic>Manipulators</topic><topic>Optimization</topic><topic>Quadratic equations</topic><topic>Quadratic programming</topic><topic>Space vehicles</topic><topic>Spacecraft attitude control</topic><topic>spacecraft attitude stabilization</topic><topic>Spacecraft tracking</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><topic>trajectory planning of space manipulator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xuhui</creatorcontrib><creatorcontrib>Jia, Yingmin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Xuhui</au><au>Jia, Yingmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>51</volume><issue>12</issue><spage>7346</spage><epage>7362</epage><pages>7346-7362</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>This article focuses on trajectory planning of the free-floating space manipulator (FFSM), so that the end-effector trajectory tracking and the spacecraft attitude stabilization are achieved simultaneously. A novel spacecraft attitude stabilization constraint with the time-decaying term and the time-varying gaining parameter is constructed, such that not only is the designed constraint satisfied at the initial instant but also the spacecraft attitude can converge into the small neighborhood of the desired attitude. Two constraints on joint accelerations are constructed, such that the constraints on joint angles/velocities/accelerations and the requirement on the end-effector trajectory tracking are both satisfied. Besides, for the cost function with the control efforts and the manipulability optimization, it can be equivalently converted as a strictly convex quadratic function. Correspondingly, the trajectory planning problem of the FFSM at the acceleration level can be formulated as a constrained convex quadratic programming problem. The proposed trajectory planning algorithm avoids the dynamic singularity of the FFSM. The effectiveness of the proposed algorithm is validated by the simulation results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2020.2966859</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6212-9796</orcidid><orcidid>https://orcid.org/0000-0002-9082-5713</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2216 |
ispartof | IEEE transactions on systems, man, and cybernetics. Systems, 2021-12, Vol.51 (12), p.7346-7362 |
issn | 2168-2216 2168-2232 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSMC_2020_2966859 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Attitude stability Constraints Convex quadratic programming Cost function End effectors manipulability optimization Manipulator dynamics Manipulators Optimization Quadratic equations Quadratic programming Space vehicles Spacecraft attitude control spacecraft attitude stabilization Spacecraft tracking Trajectory Trajectory planning trajectory planning of space manipulator |
title | Trajectory Planning of Free-Floating Space Manipulators With Spacecraft Attitude Stabilization and Manipulability Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trajectory%20Planning%20of%20Free-Floating%20Space%20Manipulators%20With%20Spacecraft%20Attitude%20Stabilization%20and%20Manipulability%20Optimization&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Lu,%20Xuhui&rft.date=2021-12-01&rft.volume=51&rft.issue=12&rft.spage=7346&rft.epage=7362&rft.pages=7346-7362&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2020.2966859&rft_dat=%3Cproquest_RIE%3E2599206159%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599206159&rft_id=info:pmid/&rft_ieee_id=8994171&rfr_iscdi=true |