A Disturbance Rejection Framework for Finite-Time and Fixed-Time Stabilization of Delayed Memristive Neural Networks

This paper proposes a unified framework to design sliding-mode control for stabilization of delayed memristive neural networks (DMNNs) with external disturbances. Under the presented framework, finite-time stabilization, and fixed-time stabilization of the controlled DMNNs can be, respectively, obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2021-02, Vol.51 (2), p.905-915
Hauptverfasser: Wang, Leimin, Zeng, Zhigang, Ge, Ming-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 915
container_issue 2
container_start_page 905
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 51
creator Wang, Leimin
Zeng, Zhigang
Ge, Ming-Feng
description This paper proposes a unified framework to design sliding-mode control for stabilization of delayed memristive neural networks (DMNNs) with external disturbances. Under the presented framework, finite-time stabilization, and fixed-time stabilization of the controlled DMNNs can be, respectively, obtained by choosing different values for a specific control parameter. It is proved that the system responses can be made reaching the designed sliding-mode surface in finite and fixed time, and then stay on it. Moreover, it also illustrates that the inevitable external disturbances can be rejected by the designed sliding-mode control. Finally, the efficiency and superiority of the obtained main results are verified by comparisons with related works and numerical simulations.
doi_str_mv 10.1109/TSMC.2018.2888867
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMC_2018_2888867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8600766</ieee_id><sourcerecordid>2478833580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-35d18236d4d0155b0c98be9590b60c2f00129319cfdc0d95f31bd5aebfdb7b863</originalsourceid><addsrcrecordid>eNo9UMtOwzAQjBBIVNAPQFwscU7xo3HsY9VSQGpBouUc2fFGcsmjOA5Qvh6HVN3L7kgzs5qJohuCJ4Rgeb_drOcTiomYUBGGp2fRiBIuYkoZPT_dhF9G47bdYYwJFZxhPor8DC1s6zunVZ0DeoMd5N42NVo6VcF34z5Q0Ti0tLX1EG9tBUjVJuAfMAPceKVtaX_Vv6wp0AJKdQCD1lC5YG2_AL1A51QZlu8d2-voolBlC-Pjvorelw_b-VO8en18ns9WcU4l8zFLDBGUcTM1mCSJxrkUGmQiseY4p0UfQzIi88Lk2MikYESbRIEujE51CHgV3Q2-e9d8dtD6bNd0rg4vMzpNhWAsETiwyMDKXdO2Dops72yl3CEjOOv7zfp-s77f7Nhv0NwOGgsAJ77gGKecsz9HwHde</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478833580</pqid></control><display><type>article</type><title>A Disturbance Rejection Framework for Finite-Time and Fixed-Time Stabilization of Delayed Memristive Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Leimin ; Zeng, Zhigang ; Ge, Ming-Feng</creator><creatorcontrib>Wang, Leimin ; Zeng, Zhigang ; Ge, Ming-Feng</creatorcontrib><description>This paper proposes a unified framework to design sliding-mode control for stabilization of delayed memristive neural networks (DMNNs) with external disturbances. Under the presented framework, finite-time stabilization, and fixed-time stabilization of the controlled DMNNs can be, respectively, obtained by choosing different values for a specific control parameter. It is proved that the system responses can be made reaching the designed sliding-mode surface in finite and fixed time, and then stay on it. Moreover, it also illustrates that the inevitable external disturbances can be rejected by the designed sliding-mode control. Finally, the efficiency and superiority of the obtained main results are verified by comparisons with related works and numerical simulations.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2018.2888867</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convergence ; Delayed memristive neural networks (DMNNs) ; Delays ; Disturbances ; finite-time stabilization (FTS) ; fixed-time stabilization (FxTS) ; Geology ; Memristors ; Neural networks ; Sliding mode control ; Stabilization ; Switches ; Synchronization ; unified framework</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2021-02, Vol.51 (2), p.905-915</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-35d18236d4d0155b0c98be9590b60c2f00129319cfdc0d95f31bd5aebfdb7b863</citedby><cites>FETCH-LOGICAL-c293t-35d18236d4d0155b0c98be9590b60c2f00129319cfdc0d95f31bd5aebfdb7b863</cites><orcidid>0000-0002-0663-3365 ; 0000-0002-6828-0147 ; 0000-0003-4587-3588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8600766$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8600766$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Leimin</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><creatorcontrib>Ge, Ming-Feng</creatorcontrib><title>A Disturbance Rejection Framework for Finite-Time and Fixed-Time Stabilization of Delayed Memristive Neural Networks</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>This paper proposes a unified framework to design sliding-mode control for stabilization of delayed memristive neural networks (DMNNs) with external disturbances. Under the presented framework, finite-time stabilization, and fixed-time stabilization of the controlled DMNNs can be, respectively, obtained by choosing different values for a specific control parameter. It is proved that the system responses can be made reaching the designed sliding-mode surface in finite and fixed time, and then stay on it. Moreover, it also illustrates that the inevitable external disturbances can be rejected by the designed sliding-mode control. Finally, the efficiency and superiority of the obtained main results are verified by comparisons with related works and numerical simulations.</description><subject>Convergence</subject><subject>Delayed memristive neural networks (DMNNs)</subject><subject>Delays</subject><subject>Disturbances</subject><subject>finite-time stabilization (FTS)</subject><subject>fixed-time stabilization (FxTS)</subject><subject>Geology</subject><subject>Memristors</subject><subject>Neural networks</subject><subject>Sliding mode control</subject><subject>Stabilization</subject><subject>Switches</subject><subject>Synchronization</subject><subject>unified framework</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQjBBIVNAPQFwscU7xo3HsY9VSQGpBouUc2fFGcsmjOA5Qvh6HVN3L7kgzs5qJohuCJ4Rgeb_drOcTiomYUBGGp2fRiBIuYkoZPT_dhF9G47bdYYwJFZxhPor8DC1s6zunVZ0DeoMd5N42NVo6VcF34z5Q0Ti0tLX1EG9tBUjVJuAfMAPceKVtaX_Vv6wp0AJKdQCD1lC5YG2_AL1A51QZlu8d2-voolBlC-Pjvorelw_b-VO8en18ns9WcU4l8zFLDBGUcTM1mCSJxrkUGmQiseY4p0UfQzIi88Lk2MikYESbRIEujE51CHgV3Q2-e9d8dtD6bNd0rg4vMzpNhWAsETiwyMDKXdO2Dops72yl3CEjOOv7zfp-s77f7Nhv0NwOGgsAJ77gGKecsz9HwHde</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Wang, Leimin</creator><creator>Zeng, Zhigang</creator><creator>Ge, Ming-Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0663-3365</orcidid><orcidid>https://orcid.org/0000-0002-6828-0147</orcidid><orcidid>https://orcid.org/0000-0003-4587-3588</orcidid></search><sort><creationdate>20210201</creationdate><title>A Disturbance Rejection Framework for Finite-Time and Fixed-Time Stabilization of Delayed Memristive Neural Networks</title><author>Wang, Leimin ; Zeng, Zhigang ; Ge, Ming-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-35d18236d4d0155b0c98be9590b60c2f00129319cfdc0d95f31bd5aebfdb7b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convergence</topic><topic>Delayed memristive neural networks (DMNNs)</topic><topic>Delays</topic><topic>Disturbances</topic><topic>finite-time stabilization (FTS)</topic><topic>fixed-time stabilization (FxTS)</topic><topic>Geology</topic><topic>Memristors</topic><topic>Neural networks</topic><topic>Sliding mode control</topic><topic>Stabilization</topic><topic>Switches</topic><topic>Synchronization</topic><topic>unified framework</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Leimin</creatorcontrib><creatorcontrib>Zeng, Zhigang</creatorcontrib><creatorcontrib>Ge, Ming-Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Leimin</au><au>Zeng, Zhigang</au><au>Ge, Ming-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Disturbance Rejection Framework for Finite-Time and Fixed-Time Stabilization of Delayed Memristive Neural Networks</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>51</volume><issue>2</issue><spage>905</spage><epage>915</epage><pages>905-915</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>This paper proposes a unified framework to design sliding-mode control for stabilization of delayed memristive neural networks (DMNNs) with external disturbances. Under the presented framework, finite-time stabilization, and fixed-time stabilization of the controlled DMNNs can be, respectively, obtained by choosing different values for a specific control parameter. It is proved that the system responses can be made reaching the designed sliding-mode surface in finite and fixed time, and then stay on it. Moreover, it also illustrates that the inevitable external disturbances can be rejected by the designed sliding-mode control. Finally, the efficiency and superiority of the obtained main results are verified by comparisons with related works and numerical simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2018.2888867</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0663-3365</orcidid><orcidid>https://orcid.org/0000-0002-6828-0147</orcidid><orcidid>https://orcid.org/0000-0003-4587-3588</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2021-02, Vol.51 (2), p.905-915
issn 2168-2216
2168-2232
language eng
recordid cdi_crossref_primary_10_1109_TSMC_2018_2888867
source IEEE Electronic Library (IEL)
subjects Convergence
Delayed memristive neural networks (DMNNs)
Delays
Disturbances
finite-time stabilization (FTS)
fixed-time stabilization (FxTS)
Geology
Memristors
Neural networks
Sliding mode control
Stabilization
Switches
Synchronization
unified framework
title A Disturbance Rejection Framework for Finite-Time and Fixed-Time Stabilization of Delayed Memristive Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Disturbance%20Rejection%20Framework%20for%20Finite-Time%20and%20Fixed-Time%20Stabilization%20of%20Delayed%20Memristive%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Wang,%20Leimin&rft.date=2021-02-01&rft.volume=51&rft.issue=2&rft.spage=905&rft.epage=915&rft.pages=905-915&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2018.2888867&rft_dat=%3Cproquest_RIE%3E2478833580%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478833580&rft_id=info:pmid/&rft_ieee_id=8600766&rfr_iscdi=true