Contraction Mapping-Based Robust Convergence of Iterative Learning Control With Uncertain, Locally Lipschitz Nonlinearity
This paper studies the output tracking control problems for multiple-input, multiple-output (MIMO) locally Lipschitz nonlinear (LLNL) systems subject to iterative operation and uncertain, iteration-varying external disturbances and initial conditions. Under the assumption of a linear, P-type iterati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2020-02, Vol.50 (2), p.442-454 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies the output tracking control problems for multiple-input, multiple-output (MIMO) locally Lipschitz nonlinear (LLNL) systems subject to iterative operation and uncertain, iteration-varying external disturbances and initial conditions. Under the assumption of a linear, P-type iterative learning control (ILC) update law, a double-dynamics analysis (DDA) approach is proposed to show the convergence of the ILC process in the presence of the locally Lipschitz nonlinearities and iteration-varying uncertainties. The DDA approach results in a contraction mapping-based convergence condition that guarantees both: 1) the boundedness of all system trajectories and 2) the robust convergence of the output tracking error. Further, a basic system relative degree condition is given that provides a necessary and sufficient (NAS) guarantee of the convergence of the ILC process. As a corollary, it is noted that in the absence of iteration-varying uncertainties, the results likewise provide an NAS convergence guarantee for MIMO LLNL systems. The simulations are presented to illustrate the ideas. |
---|---|
ISSN: | 2168-2216 2168-2232 |
DOI: | 10.1109/TSMC.2017.2780131 |