Multidomain Features-Based GA Optimized Artificial Immune System for Bearing Fault Detection

This paper proposes a novel multidomain features-based genetic algorithm (GA) optimized artificial immune system (AIS) framework for fault detection in real systems. Different from native real-valued negative selection algorithm (RNSA) that operates in original data space, this algorithm utilizes fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2020-01, Vol.50 (1), p.348-359
Hauptverfasser: Abid, Anam, Khan, Muhammad Tahir, Khan, Muhammad Salman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 1
container_start_page 348
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 50
creator Abid, Anam
Khan, Muhammad Tahir
Khan, Muhammad Salman
description This paper proposes a novel multidomain features-based genetic algorithm (GA) optimized artificial immune system (AIS) framework for fault detection in real systems. Different from native real-valued negative selection algorithm (RNSA) that operates in original data space, this algorithm utilizes feature space transformation and diversity factor-based GA for optimized detector distribution in nonself feature space. The proposed framework comprises three stages namely; feature extraction, unsupervised feature selection, and GA optimized AIS. In the first stage, signal processing methods are applied to extract multidomain features (time-domain statistical, frequency domain statistical, and special features) of the system. In the second stage, two unsupervised methods namely, k-NN clustering and pretraining using deep learning neural network are proposed for dominant fault-characterizing feature selection. Finally, in the third stage, the fault-characterizing feature vectors are used for system status categorization (i.e., normal, fault) using selected (fault-characterizing) features-based AIS method. The efficacy of the proposed framework is verified through experiments on motor bearing fault detection using vibration signal. The major accomplishment of the proposed combination of space transformation, feature selection and AIS (anomaly classification) techniques is the alleviation of computational burden on RNSA implementation. Moreover, GA optimized AIS fault diagnosis based on well-established features gives improved detection performance.
doi_str_mv 10.1109/TSMC.2017.2746762
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMC_2017_2746762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8031077</ieee_id><sourcerecordid>2333543093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1c9623134422e7fcd741d0e880ccfea5a3d3cb316913c76353b0e0b428514c513</originalsourceid><addsrcrecordid>eNo9kMFqwkAQhpfSQqX1AUovCz3H7uwkm-SotlpB8aC9FcK6mZQVk9jdzaF9-kYUTzMD3_8PfIw9gRgBiPx1u1lNR1JAOpJprFIlb9hAgsoiKVHeXndQ92zo_V4IATJTKNSAfa26Q7BlW2vb8Bnp0Dny0UR7Kvl8zNfHYGv71x9jF2xljdUHvqjrriG--fWBal61jk9IO9t885nu2_gbBTLBts0ju6v0wdPwMh_Y5-x9O_2Iluv5YjpeRkbmGCIwuZIIGMdSUlqZMo2hFJRlwpiKdKKxRLNDUDmgSRUmuBMkdrHMEohNAvjAXs69R9f-dORDsW871_QvC4mISYwix56CM2Vc672jqjg6W2v3W4AoTh6Lk8fi5LG4eOwzz-eMJaIrnwkEkab4DyrqbVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333543093</pqid></control><display><type>article</type><title>Multidomain Features-Based GA Optimized Artificial Immune System for Bearing Fault Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Abid, Anam ; Khan, Muhammad Tahir ; Khan, Muhammad Salman</creator><creatorcontrib>Abid, Anam ; Khan, Muhammad Tahir ; Khan, Muhammad Salman</creatorcontrib><description>This paper proposes a novel multidomain features-based genetic algorithm (GA) optimized artificial immune system (AIS) framework for fault detection in real systems. Different from native real-valued negative selection algorithm (RNSA) that operates in original data space, this algorithm utilizes feature space transformation and diversity factor-based GA for optimized detector distribution in nonself feature space. The proposed framework comprises three stages namely; feature extraction, unsupervised feature selection, and GA optimized AIS. In the first stage, signal processing methods are applied to extract multidomain features (time-domain statistical, frequency domain statistical, and special features) of the system. In the second stage, two unsupervised methods namely, k-NN clustering and pretraining using deep learning neural network are proposed for dominant fault-characterizing feature selection. Finally, in the third stage, the fault-characterizing feature vectors are used for system status categorization (i.e., normal, fault) using selected (fault-characterizing) features-based AIS method. The efficacy of the proposed framework is verified through experiments on motor bearing fault detection using vibration signal. The major accomplishment of the proposed combination of space transformation, feature selection and AIS (anomaly classification) techniques is the alleviation of computational burden on RNSA implementation. Moreover, GA optimized AIS fault diagnosis based on well-established features gives improved detection performance.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2017.2746762</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anomaly detection ; Artificial immune system (AIS) ; Artificial intelligence ; Clustering ; deep learning ; Detectors ; Fault detection ; Fault diagnosis ; Feature extraction ; feature selection ; genetic algorithm (GA) ; Genetic algorithms ; Immune system ; Machine learning ; negative selection algorithm (NSA) ; Neural networks ; Signal processing ; Training ; Transformations</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2020-01, Vol.50 (1), p.348-359</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1c9623134422e7fcd741d0e880ccfea5a3d3cb316913c76353b0e0b428514c513</citedby><cites>FETCH-LOGICAL-c293t-1c9623134422e7fcd741d0e880ccfea5a3d3cb316913c76353b0e0b428514c513</cites><orcidid>0000-0001-8657-8150 ; 0000-0001-9843-0452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8031077$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8031077$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abid, Anam</creatorcontrib><creatorcontrib>Khan, Muhammad Tahir</creatorcontrib><creatorcontrib>Khan, Muhammad Salman</creatorcontrib><title>Multidomain Features-Based GA Optimized Artificial Immune System for Bearing Fault Detection</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>This paper proposes a novel multidomain features-based genetic algorithm (GA) optimized artificial immune system (AIS) framework for fault detection in real systems. Different from native real-valued negative selection algorithm (RNSA) that operates in original data space, this algorithm utilizes feature space transformation and diversity factor-based GA for optimized detector distribution in nonself feature space. The proposed framework comprises three stages namely; feature extraction, unsupervised feature selection, and GA optimized AIS. In the first stage, signal processing methods are applied to extract multidomain features (time-domain statistical, frequency domain statistical, and special features) of the system. In the second stage, two unsupervised methods namely, k-NN clustering and pretraining using deep learning neural network are proposed for dominant fault-characterizing feature selection. Finally, in the third stage, the fault-characterizing feature vectors are used for system status categorization (i.e., normal, fault) using selected (fault-characterizing) features-based AIS method. The efficacy of the proposed framework is verified through experiments on motor bearing fault detection using vibration signal. The major accomplishment of the proposed combination of space transformation, feature selection and AIS (anomaly classification) techniques is the alleviation of computational burden on RNSA implementation. Moreover, GA optimized AIS fault diagnosis based on well-established features gives improved detection performance.</description><subject>Algorithms</subject><subject>Anomaly detection</subject><subject>Artificial immune system (AIS)</subject><subject>Artificial intelligence</subject><subject>Clustering</subject><subject>deep learning</subject><subject>Detectors</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Immune system</subject><subject>Machine learning</subject><subject>negative selection algorithm (NSA)</subject><subject>Neural networks</subject><subject>Signal processing</subject><subject>Training</subject><subject>Transformations</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFqwkAQhpfSQqX1AUovCz3H7uwkm-SotlpB8aC9FcK6mZQVk9jdzaF9-kYUTzMD3_8PfIw9gRgBiPx1u1lNR1JAOpJprFIlb9hAgsoiKVHeXndQ92zo_V4IATJTKNSAfa26Q7BlW2vb8Bnp0Dny0UR7Kvl8zNfHYGv71x9jF2xljdUHvqjrriG--fWBal61jk9IO9t885nu2_gbBTLBts0ju6v0wdPwMh_Y5-x9O_2Iluv5YjpeRkbmGCIwuZIIGMdSUlqZMo2hFJRlwpiKdKKxRLNDUDmgSRUmuBMkdrHMEohNAvjAXs69R9f-dORDsW871_QvC4mISYwix56CM2Vc672jqjg6W2v3W4AoTh6Lk8fi5LG4eOwzz-eMJaIrnwkEkab4DyrqbVk</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Abid, Anam</creator><creator>Khan, Muhammad Tahir</creator><creator>Khan, Muhammad Salman</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8657-8150</orcidid><orcidid>https://orcid.org/0000-0001-9843-0452</orcidid></search><sort><creationdate>202001</creationdate><title>Multidomain Features-Based GA Optimized Artificial Immune System for Bearing Fault Detection</title><author>Abid, Anam ; Khan, Muhammad Tahir ; Khan, Muhammad Salman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1c9623134422e7fcd741d0e880ccfea5a3d3cb316913c76353b0e0b428514c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Anomaly detection</topic><topic>Artificial immune system (AIS)</topic><topic>Artificial intelligence</topic><topic>Clustering</topic><topic>deep learning</topic><topic>Detectors</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Immune system</topic><topic>Machine learning</topic><topic>negative selection algorithm (NSA)</topic><topic>Neural networks</topic><topic>Signal processing</topic><topic>Training</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abid, Anam</creatorcontrib><creatorcontrib>Khan, Muhammad Tahir</creatorcontrib><creatorcontrib>Khan, Muhammad Salman</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abid, Anam</au><au>Khan, Muhammad Tahir</au><au>Khan, Muhammad Salman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidomain Features-Based GA Optimized Artificial Immune System for Bearing Fault Detection</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2020-01</date><risdate>2020</risdate><volume>50</volume><issue>1</issue><spage>348</spage><epage>359</epage><pages>348-359</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>This paper proposes a novel multidomain features-based genetic algorithm (GA) optimized artificial immune system (AIS) framework for fault detection in real systems. Different from native real-valued negative selection algorithm (RNSA) that operates in original data space, this algorithm utilizes feature space transformation and diversity factor-based GA for optimized detector distribution in nonself feature space. The proposed framework comprises three stages namely; feature extraction, unsupervised feature selection, and GA optimized AIS. In the first stage, signal processing methods are applied to extract multidomain features (time-domain statistical, frequency domain statistical, and special features) of the system. In the second stage, two unsupervised methods namely, k-NN clustering and pretraining using deep learning neural network are proposed for dominant fault-characterizing feature selection. Finally, in the third stage, the fault-characterizing feature vectors are used for system status categorization (i.e., normal, fault) using selected (fault-characterizing) features-based AIS method. The efficacy of the proposed framework is verified through experiments on motor bearing fault detection using vibration signal. The major accomplishment of the proposed combination of space transformation, feature selection and AIS (anomaly classification) techniques is the alleviation of computational burden on RNSA implementation. Moreover, GA optimized AIS fault diagnosis based on well-established features gives improved detection performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2017.2746762</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8657-8150</orcidid><orcidid>https://orcid.org/0000-0001-9843-0452</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2020-01, Vol.50 (1), p.348-359
issn 2168-2216
2168-2232
language eng
recordid cdi_crossref_primary_10_1109_TSMC_2017_2746762
source IEEE Electronic Library (IEL)
subjects Algorithms
Anomaly detection
Artificial immune system (AIS)
Artificial intelligence
Clustering
deep learning
Detectors
Fault detection
Fault diagnosis
Feature extraction
feature selection
genetic algorithm (GA)
Genetic algorithms
Immune system
Machine learning
negative selection algorithm (NSA)
Neural networks
Signal processing
Training
Transformations
title Multidomain Features-Based GA Optimized Artificial Immune System for Bearing Fault Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidomain%20Features-Based%20GA%20Optimized%20Artificial%20Immune%20System%20for%20Bearing%20Fault%20Detection&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Abid,%20Anam&rft.date=2020-01&rft.volume=50&rft.issue=1&rft.spage=348&rft.epage=359&rft.pages=348-359&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2017.2746762&rft_dat=%3Cproquest_RIE%3E2333543093%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333543093&rft_id=info:pmid/&rft_ieee_id=8031077&rfr_iscdi=true