Modeling and Interpretation of Tidal Turbine Vibration Through Weighted Least Squares Regression

Tidal power is an emerging technology with great potential to provide a sustainable means of renewable energy in many areas worldwide. However, the nature of the underwater environment provides challenges. Submerged machinery cannot be easily accessed for inspections, and turbines must be brought to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2020-04, Vol.50 (4), p.1252-1259
Hauptverfasser: Galloway, Grant S., Catterson, Victoria M., Love, Craig, Robb, Andrew, Fay, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1259
container_issue 4
container_start_page 1252
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 50
creator Galloway, Grant S.
Catterson, Victoria M.
Love, Craig
Robb, Andrew
Fay, Thomas
description Tidal power is an emerging technology with great potential to provide a sustainable means of renewable energy in many areas worldwide. However, the nature of the underwater environment provides challenges. Submerged machinery cannot be easily accessed for inspections, and turbines must be brought to the surface for maintenance. This is an expensive process and results in prolonged periods of downtime where no power can be supplied to the grid. Condition monitoring systems, capable of accurately and remotely assessing the health state of machinery while in operation, can therefore be of great value to this industry. This paper presents an approach for condition monitoring of a tidal turbine's gearbox from monitoring data with low sample rates. Models of normal behavior were trained using weighted least squares regression, where prediction errors are used to identify changes in response. This paper then examines how prediction errors from a number of different cases (including changes in control scheme and simulated gearbox faults) can be interpreted by operators to classify anomalous behavior.
doi_str_mv 10.1109/TSMC.2017.2701309
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMC_2017_2701309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7930425</ieee_id><sourcerecordid>2379351948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c29867af23aafdf3394bb570c86ea39e3165f5ea399474f7424d1ec247e49efc3</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMoOOb-APEl4PNmvto0jzL8GGwIrupjTNubLmO2W5I--N_bUtnLPRfuOefCD6FbShaUEvWQbzfLBSNULpgklBN1gSaMptmcMc4uzztNr9EshD0hhLIs5SSdoO9NW8HBNTU2TYVXTQR_9BBNdG2DW4tzV5kDzjtfuAbwpyv8eMp3vu3qHf4CV-8iVHgNJkS8PXXGQ8DvUPcSeucNurLmEGD2r1P08fyUL1_n67eX1fJxPS-Z4nGYWSqNZdwYW1nOlSiKRJIyS8FwBZymiU2GVQkprBRMVBRKJiQIBbbkU3Q_9h59e-ogRL1vO9_0LzXjUvGEKpH1Ljq6St-G4MHqo3c_xv9qSvTAUg8s9cBS_7PsM3djxgHA2d9XEsES_gdor3B4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379351948</pqid></control><display><type>article</type><title>Modeling and Interpretation of Tidal Turbine Vibration Through Weighted Least Squares Regression</title><source>IEEE Electronic Library (IEL)</source><creator>Galloway, Grant S. ; Catterson, Victoria M. ; Love, Craig ; Robb, Andrew ; Fay, Thomas</creator><creatorcontrib>Galloway, Grant S. ; Catterson, Victoria M. ; Love, Craig ; Robb, Andrew ; Fay, Thomas</creatorcontrib><description>Tidal power is an emerging technology with great potential to provide a sustainable means of renewable energy in many areas worldwide. However, the nature of the underwater environment provides challenges. Submerged machinery cannot be easily accessed for inspections, and turbines must be brought to the surface for maintenance. This is an expensive process and results in prolonged periods of downtime where no power can be supplied to the grid. Condition monitoring systems, capable of accurately and remotely assessing the health state of machinery while in operation, can therefore be of great value to this industry. This paper presents an approach for condition monitoring of a tidal turbine's gearbox from monitoring data with low sample rates. Models of normal behavior were trained using weighted least squares regression, where prediction errors are used to identify changes in response. This paper then examines how prediction errors from a number of different cases (including changes in control scheme and simulated gearbox faults) can be interpreted by operators to classify anomalous behavior.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2017.2701309</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Blades ; Computer simulation ; Condition monitoring ; Downtime ; Fault diagnosis ; Gearboxes ; Generators ; Least squares method ; least squares methods ; modeling ; New technology ; Tidal energy ; Tidal power ; tidal power generation ; Torque ; Turbines ; vibration measurement ; Vibrations ; Wind turbines</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2020-04, Vol.50 (4), p.1252-1259</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c29867af23aafdf3394bb570c86ea39e3165f5ea399474f7424d1ec247e49efc3</citedby><cites>FETCH-LOGICAL-c293t-c29867af23aafdf3394bb570c86ea39e3165f5ea399474f7424d1ec247e49efc3</cites><orcidid>0000-0003-2861-6504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7930425$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7930425$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Galloway, Grant S.</creatorcontrib><creatorcontrib>Catterson, Victoria M.</creatorcontrib><creatorcontrib>Love, Craig</creatorcontrib><creatorcontrib>Robb, Andrew</creatorcontrib><creatorcontrib>Fay, Thomas</creatorcontrib><title>Modeling and Interpretation of Tidal Turbine Vibration Through Weighted Least Squares Regression</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>Tidal power is an emerging technology with great potential to provide a sustainable means of renewable energy in many areas worldwide. However, the nature of the underwater environment provides challenges. Submerged machinery cannot be easily accessed for inspections, and turbines must be brought to the surface for maintenance. This is an expensive process and results in prolonged periods of downtime where no power can be supplied to the grid. Condition monitoring systems, capable of accurately and remotely assessing the health state of machinery while in operation, can therefore be of great value to this industry. This paper presents an approach for condition monitoring of a tidal turbine's gearbox from monitoring data with low sample rates. Models of normal behavior were trained using weighted least squares regression, where prediction errors are used to identify changes in response. This paper then examines how prediction errors from a number of different cases (including changes in control scheme and simulated gearbox faults) can be interpreted by operators to classify anomalous behavior.</description><subject>Blades</subject><subject>Computer simulation</subject><subject>Condition monitoring</subject><subject>Downtime</subject><subject>Fault diagnosis</subject><subject>Gearboxes</subject><subject>Generators</subject><subject>Least squares method</subject><subject>least squares methods</subject><subject>modeling</subject><subject>New technology</subject><subject>Tidal energy</subject><subject>Tidal power</subject><subject>tidal power generation</subject><subject>Torque</subject><subject>Turbines</subject><subject>vibration measurement</subject><subject>Vibrations</subject><subject>Wind turbines</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1LwzAUxYMoOOb-APEl4PNmvto0jzL8GGwIrupjTNubLmO2W5I--N_bUtnLPRfuOefCD6FbShaUEvWQbzfLBSNULpgklBN1gSaMptmcMc4uzztNr9EshD0hhLIs5SSdoO9NW8HBNTU2TYVXTQR_9BBNdG2DW4tzV5kDzjtfuAbwpyv8eMp3vu3qHf4CV-8iVHgNJkS8PXXGQ8DvUPcSeucNurLmEGD2r1P08fyUL1_n67eX1fJxPS-Z4nGYWSqNZdwYW1nOlSiKRJIyS8FwBZymiU2GVQkprBRMVBRKJiQIBbbkU3Q_9h59e-ogRL1vO9_0LzXjUvGEKpH1Ljq6St-G4MHqo3c_xv9qSvTAUg8s9cBS_7PsM3djxgHA2d9XEsES_gdor3B4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Galloway, Grant S.</creator><creator>Catterson, Victoria M.</creator><creator>Love, Craig</creator><creator>Robb, Andrew</creator><creator>Fay, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2861-6504</orcidid></search><sort><creationdate>20200401</creationdate><title>Modeling and Interpretation of Tidal Turbine Vibration Through Weighted Least Squares Regression</title><author>Galloway, Grant S. ; Catterson, Victoria M. ; Love, Craig ; Robb, Andrew ; Fay, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c29867af23aafdf3394bb570c86ea39e3165f5ea399474f7424d1ec247e49efc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blades</topic><topic>Computer simulation</topic><topic>Condition monitoring</topic><topic>Downtime</topic><topic>Fault diagnosis</topic><topic>Gearboxes</topic><topic>Generators</topic><topic>Least squares method</topic><topic>least squares methods</topic><topic>modeling</topic><topic>New technology</topic><topic>Tidal energy</topic><topic>Tidal power</topic><topic>tidal power generation</topic><topic>Torque</topic><topic>Turbines</topic><topic>vibration measurement</topic><topic>Vibrations</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galloway, Grant S.</creatorcontrib><creatorcontrib>Catterson, Victoria M.</creatorcontrib><creatorcontrib>Love, Craig</creatorcontrib><creatorcontrib>Robb, Andrew</creatorcontrib><creatorcontrib>Fay, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Galloway, Grant S.</au><au>Catterson, Victoria M.</au><au>Love, Craig</au><au>Robb, Andrew</au><au>Fay, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Interpretation of Tidal Turbine Vibration Through Weighted Least Squares Regression</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>50</volume><issue>4</issue><spage>1252</spage><epage>1259</epage><pages>1252-1259</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>Tidal power is an emerging technology with great potential to provide a sustainable means of renewable energy in many areas worldwide. However, the nature of the underwater environment provides challenges. Submerged machinery cannot be easily accessed for inspections, and turbines must be brought to the surface for maintenance. This is an expensive process and results in prolonged periods of downtime where no power can be supplied to the grid. Condition monitoring systems, capable of accurately and remotely assessing the health state of machinery while in operation, can therefore be of great value to this industry. This paper presents an approach for condition monitoring of a tidal turbine's gearbox from monitoring data with low sample rates. Models of normal behavior were trained using weighted least squares regression, where prediction errors are used to identify changes in response. This paper then examines how prediction errors from a number of different cases (including changes in control scheme and simulated gearbox faults) can be interpreted by operators to classify anomalous behavior.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2017.2701309</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2861-6504</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2020-04, Vol.50 (4), p.1252-1259
issn 2168-2216
2168-2232
language eng
recordid cdi_crossref_primary_10_1109_TSMC_2017_2701309
source IEEE Electronic Library (IEL)
subjects Blades
Computer simulation
Condition monitoring
Downtime
Fault diagnosis
Gearboxes
Generators
Least squares method
least squares methods
modeling
New technology
Tidal energy
Tidal power
tidal power generation
Torque
Turbines
vibration measurement
Vibrations
Wind turbines
title Modeling and Interpretation of Tidal Turbine Vibration Through Weighted Least Squares Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Interpretation%20of%20Tidal%20Turbine%20Vibration%20Through%20Weighted%20Least%20Squares%20Regression&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Galloway,%20Grant%20S.&rft.date=2020-04-01&rft.volume=50&rft.issue=4&rft.spage=1252&rft.epage=1259&rft.pages=1252-1259&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2017.2701309&rft_dat=%3Cproquest_RIE%3E2379351948%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379351948&rft_id=info:pmid/&rft_ieee_id=7930425&rfr_iscdi=true