Using Node Centrality and Optimal Control to Maximize Information Diffusion in Social Networks

We model information dissemination as a susceptible-infected epidemic process and formulate a problem to jointly optimize seeds for the epidemic and time varying resource allocation over the period of a fixed duration campaign running on a social network with a given adjacency matrix. Individuals in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2017-07, Vol.47 (7), p.1099-1110
Hauptverfasser: Kandhway, Kundan, Kuri, Joy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1110
container_issue 7
container_start_page 1099
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 47
creator Kandhway, Kundan
Kuri, Joy
description We model information dissemination as a susceptible-infected epidemic process and formulate a problem to jointly optimize seeds for the epidemic and time varying resource allocation over the period of a fixed duration campaign running on a social network with a given adjacency matrix. Individuals in the network are grouped according to their centrality measure and each group is influenced by an external control function-implemented through advertisements-during the campaign duration. The aim is to maximize an objective function which is a linear combination of the reward due to the fraction of informed individuals at the deadline, and the aggregated cost of applying controls (advertising) over the campaign duration. We also study a problem variant with a fixed budget constraint. We set up the optimality system using Pontryagin's maximum principle from optimal control theory and solve it numerically using the forward-backward sweep technique. Our formulation allows us to compare the performance of various centrality measures (pagerank, degree, closeness, and betweenness) in maximizing the spread of a message in the optimal control framework. We find that degree-a simple and local measure-performs well on the three social networks used to demonstrate results: 1) scientific collaboration; 2) Slashdot; and 3) Facebook. The optimal strategy targets central nodes when the resource is scarce, but noncentral nodes are targeted when the resource is in abundance. Our framework is general and can be used in similar studies for other disease or information spread models-that can be modeled using a system of ordinary differential equations-for a network with a known adjacency matrix.
doi_str_mv 10.1109/TSMC.2016.2531690
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMC_2016_2531690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7432048</ieee_id><sourcerecordid>1913520174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-d9901f16c4e96310f123c909022f735e81c155fa2bd7381e48e74189b8f6850f3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhCMEElXpD0BcLHFO8dqJYx9ReFXq49D2ipUmNnJJ42K7gvLrcVTU045WM7PaL0luAY8BsHhYLWflmGBgY5JTYAJfJAMCjKeEUHJ51sCuk5H3W4wxEM4oZoPkfe1N94HmtlGoVF1wVWvCEVVdgxb7YHZVi0ob17ZFwaJZ9WN25lehSaet21XB2A49Ga0PvlemQ0tbm5iZq_Bt3ae_Sa501Xo1-p_DZP3yvCrf0unidVI-TtOa8iykjRAYNLA6U4JRwBoIrQUWmBBd0FxxqCHPdUU2TUE5qIyrIgMuNlwznmNNh8n9qXfv7NdB-SC39uC6eFKCAJpHOEUWXXBy1c5675SWexdfdEcJWPYkZU9S9iTlP8mYuTtljFLq7I9lBGec_gFBhm4T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913520174</pqid></control><display><type>article</type><title>Using Node Centrality and Optimal Control to Maximize Information Diffusion in Social Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Kandhway, Kundan ; Kuri, Joy</creator><creatorcontrib>Kandhway, Kundan ; Kuri, Joy</creatorcontrib><description>We model information dissemination as a susceptible-infected epidemic process and formulate a problem to jointly optimize seeds for the epidemic and time varying resource allocation over the period of a fixed duration campaign running on a social network with a given adjacency matrix. Individuals in the network are grouped according to their centrality measure and each group is influenced by an external control function-implemented through advertisements-during the campaign duration. The aim is to maximize an objective function which is a linear combination of the reward due to the fraction of informed individuals at the deadline, and the aggregated cost of applying controls (advertising) over the campaign duration. We also study a problem variant with a fixed budget constraint. We set up the optimality system using Pontryagin's maximum principle from optimal control theory and solve it numerically using the forward-backward sweep technique. Our formulation allows us to compare the performance of various centrality measures (pagerank, degree, closeness, and betweenness) in maximizing the spread of a message in the optimal control framework. We find that degree-a simple and local measure-performs well on the three social networks used to demonstrate results: 1) scientific collaboration; 2) Slashdot; and 3) Facebook. The optimal strategy targets central nodes when the resource is scarce, but noncentral nodes are targeted when the resource is in abundance. Our framework is general and can be used in similar studies for other disease or information spread models-that can be modeled using a system of ordinary differential equations-for a network with a known adjacency matrix.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2016.2531690</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Abundance ; Advertisements ; Advertising ; Control systems ; Control theory ; Differential equations ; Economic models ; Epidemics ; Information dissemination ; Information epidemics ; Mathematical model ; Mathematical models ; Maximum principle ; Media ; Modeling ; Optimal control ; Optimization ; Ordinary differential equations ; Pontryagin’s maximum principle ; Resource allocation ; Search engines ; Seeds ; Silicon ; Social network services ; Social networks ; susceptible-infected (SI)</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2017-07, Vol.47 (7), p.1099-1110</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-d9901f16c4e96310f123c909022f735e81c155fa2bd7381e48e74189b8f6850f3</citedby><cites>FETCH-LOGICAL-c384t-d9901f16c4e96310f123c909022f735e81c155fa2bd7381e48e74189b8f6850f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7432048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7432048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kandhway, Kundan</creatorcontrib><creatorcontrib>Kuri, Joy</creatorcontrib><title>Using Node Centrality and Optimal Control to Maximize Information Diffusion in Social Networks</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>We model information dissemination as a susceptible-infected epidemic process and formulate a problem to jointly optimize seeds for the epidemic and time varying resource allocation over the period of a fixed duration campaign running on a social network with a given adjacency matrix. Individuals in the network are grouped according to their centrality measure and each group is influenced by an external control function-implemented through advertisements-during the campaign duration. The aim is to maximize an objective function which is a linear combination of the reward due to the fraction of informed individuals at the deadline, and the aggregated cost of applying controls (advertising) over the campaign duration. We also study a problem variant with a fixed budget constraint. We set up the optimality system using Pontryagin's maximum principle from optimal control theory and solve it numerically using the forward-backward sweep technique. Our formulation allows us to compare the performance of various centrality measures (pagerank, degree, closeness, and betweenness) in maximizing the spread of a message in the optimal control framework. We find that degree-a simple and local measure-performs well on the three social networks used to demonstrate results: 1) scientific collaboration; 2) Slashdot; and 3) Facebook. The optimal strategy targets central nodes when the resource is scarce, but noncentral nodes are targeted when the resource is in abundance. Our framework is general and can be used in similar studies for other disease or information spread models-that can be modeled using a system of ordinary differential equations-for a network with a known adjacency matrix.</description><subject>Abundance</subject><subject>Advertisements</subject><subject>Advertising</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Differential equations</subject><subject>Economic models</subject><subject>Epidemics</subject><subject>Information dissemination</subject><subject>Information epidemics</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Maximum principle</subject><subject>Media</subject><subject>Modeling</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Pontryagin’s maximum principle</subject><subject>Resource allocation</subject><subject>Search engines</subject><subject>Seeds</subject><subject>Silicon</subject><subject>Social network services</subject><subject>Social networks</subject><subject>susceptible-infected (SI)</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhCMEElXpD0BcLHFO8dqJYx9ReFXq49D2ipUmNnJJ42K7gvLrcVTU045WM7PaL0luAY8BsHhYLWflmGBgY5JTYAJfJAMCjKeEUHJ51sCuk5H3W4wxEM4oZoPkfe1N94HmtlGoVF1wVWvCEVVdgxb7YHZVi0ob17ZFwaJZ9WN25lehSaet21XB2A49Ga0PvlemQ0tbm5iZq_Bt3ae_Sa501Xo1-p_DZP3yvCrf0unidVI-TtOa8iykjRAYNLA6U4JRwBoIrQUWmBBd0FxxqCHPdUU2TUE5qIyrIgMuNlwznmNNh8n9qXfv7NdB-SC39uC6eFKCAJpHOEUWXXBy1c5675SWexdfdEcJWPYkZU9S9iTlP8mYuTtljFLq7I9lBGec_gFBhm4T</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Kandhway, Kundan</creator><creator>Kuri, Joy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170701</creationdate><title>Using Node Centrality and Optimal Control to Maximize Information Diffusion in Social Networks</title><author>Kandhway, Kundan ; Kuri, Joy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-d9901f16c4e96310f123c909022f735e81c155fa2bd7381e48e74189b8f6850f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abundance</topic><topic>Advertisements</topic><topic>Advertising</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Differential equations</topic><topic>Economic models</topic><topic>Epidemics</topic><topic>Information dissemination</topic><topic>Information epidemics</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Maximum principle</topic><topic>Media</topic><topic>Modeling</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Pontryagin’s maximum principle</topic><topic>Resource allocation</topic><topic>Search engines</topic><topic>Seeds</topic><topic>Silicon</topic><topic>Social network services</topic><topic>Social networks</topic><topic>susceptible-infected (SI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandhway, Kundan</creatorcontrib><creatorcontrib>Kuri, Joy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kandhway, Kundan</au><au>Kuri, Joy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Node Centrality and Optimal Control to Maximize Information Diffusion in Social Networks</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>47</volume><issue>7</issue><spage>1099</spage><epage>1110</epage><pages>1099-1110</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>We model information dissemination as a susceptible-infected epidemic process and formulate a problem to jointly optimize seeds for the epidemic and time varying resource allocation over the period of a fixed duration campaign running on a social network with a given adjacency matrix. Individuals in the network are grouped according to their centrality measure and each group is influenced by an external control function-implemented through advertisements-during the campaign duration. The aim is to maximize an objective function which is a linear combination of the reward due to the fraction of informed individuals at the deadline, and the aggregated cost of applying controls (advertising) over the campaign duration. We also study a problem variant with a fixed budget constraint. We set up the optimality system using Pontryagin's maximum principle from optimal control theory and solve it numerically using the forward-backward sweep technique. Our formulation allows us to compare the performance of various centrality measures (pagerank, degree, closeness, and betweenness) in maximizing the spread of a message in the optimal control framework. We find that degree-a simple and local measure-performs well on the three social networks used to demonstrate results: 1) scientific collaboration; 2) Slashdot; and 3) Facebook. The optimal strategy targets central nodes when the resource is scarce, but noncentral nodes are targeted when the resource is in abundance. Our framework is general and can be used in similar studies for other disease or information spread models-that can be modeled using a system of ordinary differential equations-for a network with a known adjacency matrix.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2016.2531690</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2017-07, Vol.47 (7), p.1099-1110
issn 2168-2216
2168-2232
language eng
recordid cdi_crossref_primary_10_1109_TSMC_2016_2531690
source IEEE Electronic Library (IEL)
subjects Abundance
Advertisements
Advertising
Control systems
Control theory
Differential equations
Economic models
Epidemics
Information dissemination
Information epidemics
Mathematical model
Mathematical models
Maximum principle
Media
Modeling
Optimal control
Optimization
Ordinary differential equations
Pontryagin’s maximum principle
Resource allocation
Search engines
Seeds
Silicon
Social network services
Social networks
susceptible-infected (SI)
title Using Node Centrality and Optimal Control to Maximize Information Diffusion in Social Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T09%3A54%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Node%20Centrality%20and%20Optimal%20Control%20to%20Maximize%20Information%20Diffusion%20in%20Social%20Networks&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Kandhway,%20Kundan&rft.date=2017-07-01&rft.volume=47&rft.issue=7&rft.spage=1099&rft.epage=1110&rft.pages=1099-1110&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2016.2531690&rft_dat=%3Cproquest_RIE%3E1913520174%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913520174&rft_id=info:pmid/&rft_ieee_id=7432048&rfr_iscdi=true