A Biological Approach to Pattern Recognition
This paper describes a layer structured system suitable for pattern recognition which operates similar to the afferent nervous system of vertebrates. The ``system theory of homogeneous layers'' has been developed to describe signal transmission and signal processing between neuronal layers...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics man, and cybernetics, 1974-01, Vol.SMC-4 (1), p.34-39 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 1 |
container_start_page | 34 |
container_title | IEEE transactions on systems, man, and cybernetics |
container_volume | SMC-4 |
creator | Marko, Hans |
description | This paper describes a layer structured system suitable for pattern recognition which operates similar to the afferent nervous system of vertebrates. The ``system theory of homogeneous layers'' has been developed to describe signal transmission and signal processing between neuronal layers. Feature extraction in the sense of spatial filtering is performed by such a layered system with a few hierarchical stages. The last stage contains adaptive coupling which is adjusted by a learning process. The system has been simulated with a computer and parts of it with a coherent light arrangement. Its performance im recognizing handprinted characters (alphanumerics) is highly satisfactory and corresponds approximately to the human capability for this task. |
doi_str_mv | 10.1109/TSMC.1974.5408518 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMC_1974_5408518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5408518</ieee_id><sourcerecordid>10_1109_TSMC_1974_5408518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-86d5868b10a8cdf9709e8c7f565b13b5a9c3831a9d8ae28d73a546a17169013b3</originalsourceid><addsrcrecordid>eNo9j8tKxDAYhYMoWEcfQNz0AWzN31z6Z1kHbzCi6LgOaZqOkdqUtBvf3pYZXR0O5wIfIZdAcwCqbrbvz-scVMlzwSkKwCOSFCAxKxRVxyShFDBTvCxOydk4fs2WcyUScl2ltz50Yeet6dJqGGIw9jOdQvpqpsnFPn1zNux6P_nQn5OT1nSjuzjoinzc323Xj9nm5eFpXW0yW0g2ZSgbgRJroAZt06qSKoe2bIUUNbBaGGUZMjCqQeMKbEpmBJcGSpCKzgW2IrD_tTGMY3StHqL_NvFHA9ULrl5w9YKrD7jz5mq_8c65__5f-gsEk0-x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Biological Approach to Pattern Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Marko, Hans</creator><creatorcontrib>Marko, Hans</creatorcontrib><description>This paper describes a layer structured system suitable for pattern recognition which operates similar to the afferent nervous system of vertebrates. The ``system theory of homogeneous layers'' has been developed to describe signal transmission and signal processing between neuronal layers. Feature extraction in the sense of spatial filtering is performed by such a layered system with a few hierarchical stages. The last stage contains adaptive coupling which is adjusted by a learning process. The system has been simulated with a computer and parts of it with a coherent light arrangement. Its performance im recognizing handprinted characters (alphanumerics) is highly satisfactory and corresponds approximately to the human capability for this task.</description><identifier>ISSN: 0018-9472</identifier><identifier>EISSN: 2168-2909</identifier><identifier>DOI: 10.1109/TSMC.1974.5408518</identifier><identifier>CODEN: ISYMAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive signal processing ; Biomedical signal processing ; Computational modeling ; Computer simulation ; Couplings ; Feature extraction ; Filtering ; Nervous system ; Pattern recognition ; Signal processing</subject><ispartof>IEEE transactions on systems, man, and cybernetics, 1974-01, Vol.SMC-4 (1), p.34-39</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-86d5868b10a8cdf9709e8c7f565b13b5a9c3831a9d8ae28d73a546a17169013b3</citedby><cites>FETCH-LOGICAL-c263t-86d5868b10a8cdf9709e8c7f565b13b5a9c3831a9d8ae28d73a546a17169013b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5408518$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5408518$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marko, Hans</creatorcontrib><title>A Biological Approach to Pattern Recognition</title><title>IEEE transactions on systems, man, and cybernetics</title><addtitle>T-SMC</addtitle><description>This paper describes a layer structured system suitable for pattern recognition which operates similar to the afferent nervous system of vertebrates. The ``system theory of homogeneous layers'' has been developed to describe signal transmission and signal processing between neuronal layers. Feature extraction in the sense of spatial filtering is performed by such a layered system with a few hierarchical stages. The last stage contains adaptive coupling which is adjusted by a learning process. The system has been simulated with a computer and parts of it with a coherent light arrangement. Its performance im recognizing handprinted characters (alphanumerics) is highly satisfactory and corresponds approximately to the human capability for this task.</description><subject>Adaptive signal processing</subject><subject>Biomedical signal processing</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Couplings</subject><subject>Feature extraction</subject><subject>Filtering</subject><subject>Nervous system</subject><subject>Pattern recognition</subject><subject>Signal processing</subject><issn>0018-9472</issn><issn>2168-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><recordid>eNo9j8tKxDAYhYMoWEcfQNz0AWzN31z6Z1kHbzCi6LgOaZqOkdqUtBvf3pYZXR0O5wIfIZdAcwCqbrbvz-scVMlzwSkKwCOSFCAxKxRVxyShFDBTvCxOydk4fs2WcyUScl2ltz50Yeet6dJqGGIw9jOdQvpqpsnFPn1zNux6P_nQn5OT1nSjuzjoinzc323Xj9nm5eFpXW0yW0g2ZSgbgRJroAZt06qSKoe2bIUUNbBaGGUZMjCqQeMKbEpmBJcGSpCKzgW2IrD_tTGMY3StHqL_NvFHA9ULrl5w9YKrD7jz5mq_8c65__5f-gsEk0-x</recordid><startdate>197401</startdate><enddate>197401</enddate><creator>Marko, Hans</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197401</creationdate><title>A Biological Approach to Pattern Recognition</title><author>Marko, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-86d5868b10a8cdf9709e8c7f565b13b5a9c3831a9d8ae28d73a546a17169013b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><topic>Adaptive signal processing</topic><topic>Biomedical signal processing</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Couplings</topic><topic>Feature extraction</topic><topic>Filtering</topic><topic>Nervous system</topic><topic>Pattern recognition</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Marko, Hans</creatorcontrib><collection>CrossRef</collection><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marko, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Biological Approach to Pattern Recognition</atitle><jtitle>IEEE transactions on systems, man, and cybernetics</jtitle><stitle>T-SMC</stitle><date>1974-01</date><risdate>1974</risdate><volume>SMC-4</volume><issue>1</issue><spage>34</spage><epage>39</epage><pages>34-39</pages><issn>0018-9472</issn><eissn>2168-2909</eissn><coden>ISYMAW</coden><abstract>This paper describes a layer structured system suitable for pattern recognition which operates similar to the afferent nervous system of vertebrates. The ``system theory of homogeneous layers'' has been developed to describe signal transmission and signal processing between neuronal layers. Feature extraction in the sense of spatial filtering is performed by such a layered system with a few hierarchical stages. The last stage contains adaptive coupling which is adjusted by a learning process. The system has been simulated with a computer and parts of it with a coherent light arrangement. Its performance im recognizing handprinted characters (alphanumerics) is highly satisfactory and corresponds approximately to the human capability for this task.</abstract><pub>IEEE</pub><doi>10.1109/TSMC.1974.5408518</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9472 |
ispartof | IEEE transactions on systems, man, and cybernetics, 1974-01, Vol.SMC-4 (1), p.34-39 |
issn | 0018-9472 2168-2909 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSMC_1974_5408518 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive signal processing Biomedical signal processing Computational modeling Computer simulation Couplings Feature extraction Filtering Nervous system Pattern recognition Signal processing |
title | A Biological Approach to Pattern Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Biological%20Approach%20to%20Pattern%20Recognition&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics&rft.au=Marko,%20Hans&rft.date=1974-01&rft.volume=SMC-4&rft.issue=1&rft.spage=34&rft.epage=39&rft.pages=34-39&rft.issn=0018-9472&rft.eissn=2168-2909&rft.coden=ISYMAW&rft_id=info:doi/10.1109/TSMC.1974.5408518&rft_dat=%3Ccrossref_RIE%3E10_1109_TSMC_1974_5408518%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5408518&rfr_iscdi=true |