Fusing Face-Verification Algorithms and Humans
It has been demonstrated that state-of-the-art face-recognition algorithms can surpass human accuracy at matching faces over changes in illumination. The ranking of algorithms and humans by accuracy, however, does not provide information about whether algorithms and humans perform the task comparabl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2007-10, Vol.37 (5), p.1149-1155 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been demonstrated that state-of-the-art face-recognition algorithms can surpass human accuracy at matching faces over changes in illumination. The ranking of algorithms and humans by accuracy, however, does not provide information about whether algorithms and humans perform the task comparably or whether algorithms and humans can be fused to improve performance. In this paper, we fused humans and algorithms using partial least square regression (PLSR). In the first experiment, we applied PLSR to face-pair similarity scores generated by seven algorithms participating in the Face Recognition Grand Challenge. The PLSR produced an optimal weighting of the similarity scores, which we tested for generality with a jackknife procedure. Fusing the algorithms' similarity scores using the optimal weights produced a twofold reduction of error rate over the most accurate algorithm. Next, human-subject-generated similarity scores were added to the PLSR analysis. Fusing humans and algorithms increased the performance to near-perfect classification accuracy. These results are discussed in terms of maximizing face-verification accuracy with hybrid systems consisting of multiple algorithms and humans. |
---|---|
ISSN: | 1083-4419 2168-2267 1941-0492 2168-2275 |
DOI: | 10.1109/TSMCB.2007.907034 |