Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances

This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their represe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man and cybernetics. Part A, Systems and humans man and cybernetics. Part A, Systems and humans, 2009-11, Vol.39 (6), p.1295-1306
Hauptverfasser: de A.T. de Carvalho, F., Lechevallier, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1306
container_issue 6
container_start_page 1295
container_title IEEE transactions on systems, man and cybernetics. Part A, Systems and humans
container_volume 39
creator de A.T. de Carvalho, F.
Lechevallier, Y.
description This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. These adaptive quadratic distances change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Moreover, various tools for the partition and cluster interpretation of interval-valued data are also presented. Experiments with real and synthetic interval-valued data sets show the usefulness of these adaptive clustering methods and the merit of the partition and cluster interpretation tools.
doi_str_mv 10.1109/TSMCA.2009.2030167
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSMCA_2009_2030167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5281204</ieee_id><sourcerecordid>2294910411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-47159ba447a2d881d2d085d419605b25e6265709cf8a6e86663f1492729e4e133</originalsourceid><addsrcrecordid>eNpdkLtOw0AQRVcIJELgB6CxaKgc9v0og8MjUhAgAu1qYq-RI8cOu3ak_D0bElHQzNzi3NHoIHRJ8IgQbG7n78_ZeEQxNnEwTKQ6QgMihE4pp_I4ZqxZyjlVp-gshCXGhHPDB-h1sm1gVeVJVvehc75qvpK2TKZNzBuo00-oe1ckE-gguYMQY9sk4wLWXbVxyVsPhYcu1idV6KDJXThHJyXUwV0c9hB9PNzPs6d09vI4zcazNGdUdilXRJgFcK6AFlqTghZYi4ITI7FYUOEklUJhk5capNNSSlYSbqiixnFHGBuim_3dtW-_exc6u6pC7uoaGtf2wWqpFBPU6Ehe_yOXbe-b-JzVQnEWdeEI0T2U-zYE70q79tUK_NYSbHeK7a9iu1NsD4pj6WpfqpxzfwVBNaGYsx_G2XVG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857433010</pqid></control><display><type>article</type><title>Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances</title><source>IEEE Electronic Library (IEL)</source><creator>de A.T. de Carvalho, F. ; Lechevallier, Y.</creator><creatorcontrib>de A.T. de Carvalho, F. ; Lechevallier, Y.</creatorcontrib><description>This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. These adaptive quadratic distances change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Moreover, various tools for the partition and cluster interpretation of interval-valued data are also presented. Experiments with real and synthetic interval-valued data sets show the usefulness of these adaptive clustering methods and the merit of the partition and cluster interpretation tools.</description><identifier>ISSN: 1083-4427</identifier><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 1558-2426</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMCA.2009.2030167</identifier><identifier>CODEN: ITSHFX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive quadratic distances ; cluster interpretation indexes ; Clustering algorithms ; clustering analysis ; Clustering methods ; Data analysis ; Data mining ; Heuristic algorithms ; Iterative algorithms ; Optimization methods ; partition interpretation indexes ; Partitioning algorithms ; Pattern recognition ; Prototypes ; symbolic interval data analysis</subject><ispartof>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2009-11, Vol.39 (6), p.1295-1306</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-47159ba447a2d881d2d085d419605b25e6265709cf8a6e86663f1492729e4e133</citedby><cites>FETCH-LOGICAL-c326t-47159ba447a2d881d2d085d419605b25e6265709cf8a6e86663f1492729e4e133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5281204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5281204$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de A.T. de Carvalho, F.</creatorcontrib><creatorcontrib>Lechevallier, Y.</creatorcontrib><title>Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances</title><title>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</title><addtitle>TSMCA</addtitle><description>This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. These adaptive quadratic distances change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Moreover, various tools for the partition and cluster interpretation of interval-valued data are also presented. Experiments with real and synthetic interval-valued data sets show the usefulness of these adaptive clustering methods and the merit of the partition and cluster interpretation tools.</description><subject>Adaptive quadratic distances</subject><subject>cluster interpretation indexes</subject><subject>Clustering algorithms</subject><subject>clustering analysis</subject><subject>Clustering methods</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Heuristic algorithms</subject><subject>Iterative algorithms</subject><subject>Optimization methods</subject><subject>partition interpretation indexes</subject><subject>Partitioning algorithms</subject><subject>Pattern recognition</subject><subject>Prototypes</subject><subject>symbolic interval data analysis</subject><issn>1083-4427</issn><issn>2168-2216</issn><issn>1558-2426</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLtOw0AQRVcIJELgB6CxaKgc9v0og8MjUhAgAu1qYq-RI8cOu3ak_D0bElHQzNzi3NHoIHRJ8IgQbG7n78_ZeEQxNnEwTKQ6QgMihE4pp_I4ZqxZyjlVp-gshCXGhHPDB-h1sm1gVeVJVvehc75qvpK2TKZNzBuo00-oe1ckE-gguYMQY9sk4wLWXbVxyVsPhYcu1idV6KDJXThHJyXUwV0c9hB9PNzPs6d09vI4zcazNGdUdilXRJgFcK6AFlqTghZYi4ITI7FYUOEklUJhk5capNNSSlYSbqiixnFHGBuim_3dtW-_exc6u6pC7uoaGtf2wWqpFBPU6Ehe_yOXbe-b-JzVQnEWdeEI0T2U-zYE70q79tUK_NYSbHeK7a9iu1NsD4pj6WpfqpxzfwVBNaGYsx_G2XVG</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>de A.T. de Carvalho, F.</creator><creator>Lechevallier, Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20091101</creationdate><title>Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances</title><author>de A.T. de Carvalho, F. ; Lechevallier, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-47159ba447a2d881d2d085d419605b25e6265709cf8a6e86663f1492729e4e133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptive quadratic distances</topic><topic>cluster interpretation indexes</topic><topic>Clustering algorithms</topic><topic>clustering analysis</topic><topic>Clustering methods</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Heuristic algorithms</topic><topic>Iterative algorithms</topic><topic>Optimization methods</topic><topic>partition interpretation indexes</topic><topic>Partitioning algorithms</topic><topic>Pattern recognition</topic><topic>Prototypes</topic><topic>symbolic interval data analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de A.T. de Carvalho, F.</creatorcontrib><creatorcontrib>Lechevallier, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de A.T. de Carvalho, F.</au><au>Lechevallier, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances</atitle><jtitle>IEEE transactions on systems, man and cybernetics. Part A, Systems and humans</jtitle><stitle>TSMCA</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>39</volume><issue>6</issue><spage>1295</spage><epage>1306</epage><pages>1295-1306</pages><issn>1083-4427</issn><issn>2168-2216</issn><eissn>1558-2426</eissn><eissn>2168-2232</eissn><coden>ITSHFX</coden><abstract>This paper presents partitioning dynamic clustering methods for interval-valued data based on suitable adaptive quadratic distances. These methods furnish a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. These adaptive quadratic distances change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Moreover, various tools for the partition and cluster interpretation of interval-valued data are also presented. Experiments with real and synthetic interval-valued data sets show the usefulness of these adaptive clustering methods and the merit of the partition and cluster interpretation tools.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMCA.2009.2030167</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4427
ispartof IEEE transactions on systems, man and cybernetics. Part A, Systems and humans, 2009-11, Vol.39 (6), p.1295-1306
issn 1083-4427
2168-2216
1558-2426
2168-2232
language eng
recordid cdi_crossref_primary_10_1109_TSMCA_2009_2030167
source IEEE Electronic Library (IEL)
subjects Adaptive quadratic distances
cluster interpretation indexes
Clustering algorithms
clustering analysis
Clustering methods
Data analysis
Data mining
Heuristic algorithms
Iterative algorithms
Optimization methods
partition interpretation indexes
Partitioning algorithms
Pattern recognition
Prototypes
symbolic interval data analysis
title Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Clustering%20of%20Interval-Valued%20Data%20Based%20on%20Adaptive%20Quadratic%20Distances&rft.jtitle=IEEE%20transactions%20on%20systems,%20man%20and%20cybernetics.%20Part%20A,%20Systems%20and%20humans&rft.au=de%20A.T.%20de%20Carvalho,%20F.&rft.date=2009-11-01&rft.volume=39&rft.issue=6&rft.spage=1295&rft.epage=1306&rft.pages=1295-1306&rft.issn=1083-4427&rft.eissn=1558-2426&rft.coden=ITSHFX&rft_id=info:doi/10.1109/TSMCA.2009.2030167&rft_dat=%3Cproquest_RIE%3E2294910411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=857433010&rft_id=info:pmid/&rft_ieee_id=5281204&rfr_iscdi=true