Distributed Convex Optimization "Over-the-Air" in Dynamic Environments

This paper presents a decentralized algorithm for solving distributed convex optimization problems in dynamic networks with time-varying objectives. The unique feature of the algorithm lies in its ability to accommodate a wide range of communication systems, including previously unsupported ones, by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal and information processing over networks 2024, Vol.10, p.610-625
Hauptverfasser: Agrawal, Navneet, Cavalcante, Renato Luis Garrido, Yukawa, Masahiro, Stanczak, Slawomir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 625
container_issue
container_start_page 610
container_title IEEE transactions on signal and information processing over networks
container_volume 10
creator Agrawal, Navneet
Cavalcante, Renato Luis Garrido
Yukawa, Masahiro
Stanczak, Slawomir
description This paper presents a decentralized algorithm for solving distributed convex optimization problems in dynamic networks with time-varying objectives. The unique feature of the algorithm lies in its ability to accommodate a wide range of communication systems, including previously unsupported ones, by abstractly modeling the information exchange in the network. Specifically, it supports a novel communication protocol based on the "over-the-air" function computation (OTA-C) technology, that is designed for an efficient and truly decentralized implementation of the consensus step of the algorithm. Unlike existing OTA-C protocols, the proposed protocol does not require the knowledge of network graph structure or channel state information, making it particularly suitable for decentralized implementation over ultra-dense wireless networks with time-varying topologies and fading channels. Furthermore, the proposed algorithm synergizes with the "superiorization" methodology, allowing the development of new distributed algorithms with enhanced performance for the intended applications. The theoretical analysis establishes sufficient conditions for almost sure convergence of the algorithm to a common time-invariant solution for all agents, assuming such a solution exists. Our algorithm is applied to a real-world distributed random field estimation problem, showcasing its efficacy in terms of convergence speed, scalability, and spectral efficiency. Furthermore, we present a superiorized version of our algorithm that achieves faster convergence with significantly reduced energy consumption compared to the unsuperiorized algorithm.
doi_str_mv 10.1109/TSIPN.2024.3423668
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSIPN_2024_3423668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10587175</ieee_id><sourcerecordid>3086432903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-a119f473741c404ad4155d9701b1ad5c0a497f710f38c1912970ed25fc097deb3</originalsourceid><addsrcrecordid>eNpNkMFOAjEQhhujiQR5AeNhg-fFTtvd2R4JiJIQMRETb03Z7cYS6WJbiPj0LsKB0_zJ_N9M8hFyC3QAQOXD4m36-jJglIkBF4zneXFBOowjTxHzj8uzfE16IawopZChQCk7ZDK2IXq73EZTJaPG7cxPMt9Eu7a_OtrGJf35zvg0fpp0aH0_sS4Z751e2zJ5dDvrG7c2LoYbclXrr2B6p9kl75PHxeg5nc2fpqPhLC0BMaYaQNYCOQooBRW6EpBllUQKS9BVVlItJNYItOZFCRJYuzIVy-qSSqzMknfJ_fHuxjffWxOiWjVb79qXitMiF5xJytsWO7ZK34TgTa023q613yug6qBM_StTB2XqpKyF7o6QNcacAVmBgBn_A1sTZtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086432903</pqid></control><display><type>article</type><title>Distributed Convex Optimization "Over-the-Air" in Dynamic Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Agrawal, Navneet ; Cavalcante, Renato Luis Garrido ; Yukawa, Masahiro ; Stanczak, Slawomir</creator><creatorcontrib>Agrawal, Navneet ; Cavalcante, Renato Luis Garrido ; Yukawa, Masahiro ; Stanczak, Slawomir</creatorcontrib><description>This paper presents a decentralized algorithm for solving distributed convex optimization problems in dynamic networks with time-varying objectives. The unique feature of the algorithm lies in its ability to accommodate a wide range of communication systems, including previously unsupported ones, by abstractly modeling the information exchange in the network. Specifically, it supports a novel communication protocol based on the "over-the-air" function computation (OTA-C) technology, that is designed for an efficient and truly decentralized implementation of the consensus step of the algorithm. Unlike existing OTA-C protocols, the proposed protocol does not require the knowledge of network graph structure or channel state information, making it particularly suitable for decentralized implementation over ultra-dense wireless networks with time-varying topologies and fading channels. Furthermore, the proposed algorithm synergizes with the "superiorization" methodology, allowing the development of new distributed algorithms with enhanced performance for the intended applications. The theoretical analysis establishes sufficient conditions for almost sure convergence of the algorithm to a common time-invariant solution for all agents, assuming such a solution exists. Our algorithm is applied to a real-world distributed random field estimation problem, showcasing its efficacy in terms of convergence speed, scalability, and spectral efficiency. Furthermore, we present a superiorized version of our algorithm that achieves faster convergence with significantly reduced energy consumption compared to the unsuperiorized algorithm.</description><identifier>ISSN: 2373-776X</identifier><identifier>EISSN: 2373-776X</identifier><identifier>EISSN: 2373-7778</identifier><identifier>DOI: 10.1109/TSIPN.2024.3423668</identifier><identifier>CODEN: ITSIBW</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Communications systems ; Convergence ; Convex analysis ; Convexity ; decentralized ; Distributed algorithms ; distributed optimization ; Energy consumption ; Energy conversion efficiency ; Fields (mathematics) ; Optimization ; over-the-air function computation ; Perturbation methods ; Protocols ; superiorization ; time-varying network ; Topology ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE transactions on signal and information processing over networks, 2024, Vol.10, p.610-625</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-a119f473741c404ad4155d9701b1ad5c0a497f710f38c1912970ed25fc097deb3</cites><orcidid>0000-0003-3829-4668 ; 0000-0002-8216-1064 ; 0000-0002-8826-7580 ; 0000-0002-3709-275X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10587175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10587175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agrawal, Navneet</creatorcontrib><creatorcontrib>Cavalcante, Renato Luis Garrido</creatorcontrib><creatorcontrib>Yukawa, Masahiro</creatorcontrib><creatorcontrib>Stanczak, Slawomir</creatorcontrib><title>Distributed Convex Optimization "Over-the-Air" in Dynamic Environments</title><title>IEEE transactions on signal and information processing over networks</title><addtitle>TSIPN</addtitle><description>This paper presents a decentralized algorithm for solving distributed convex optimization problems in dynamic networks with time-varying objectives. The unique feature of the algorithm lies in its ability to accommodate a wide range of communication systems, including previously unsupported ones, by abstractly modeling the information exchange in the network. Specifically, it supports a novel communication protocol based on the "over-the-air" function computation (OTA-C) technology, that is designed for an efficient and truly decentralized implementation of the consensus step of the algorithm. Unlike existing OTA-C protocols, the proposed protocol does not require the knowledge of network graph structure or channel state information, making it particularly suitable for decentralized implementation over ultra-dense wireless networks with time-varying topologies and fading channels. Furthermore, the proposed algorithm synergizes with the "superiorization" methodology, allowing the development of new distributed algorithms with enhanced performance for the intended applications. The theoretical analysis establishes sufficient conditions for almost sure convergence of the algorithm to a common time-invariant solution for all agents, assuming such a solution exists. Our algorithm is applied to a real-world distributed random field estimation problem, showcasing its efficacy in terms of convergence speed, scalability, and spectral efficiency. Furthermore, we present a superiorized version of our algorithm that achieves faster convergence with significantly reduced energy consumption compared to the unsuperiorized algorithm.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Communications systems</subject><subject>Convergence</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>decentralized</subject><subject>Distributed algorithms</subject><subject>distributed optimization</subject><subject>Energy consumption</subject><subject>Energy conversion efficiency</subject><subject>Fields (mathematics)</subject><subject>Optimization</subject><subject>over-the-air function computation</subject><subject>Perturbation methods</subject><subject>Protocols</subject><subject>superiorization</subject><subject>time-varying network</subject><subject>Topology</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2373-776X</issn><issn>2373-776X</issn><issn>2373-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOAjEQhhujiQR5AeNhg-fFTtvd2R4JiJIQMRETb03Z7cYS6WJbiPj0LsKB0_zJ_N9M8hFyC3QAQOXD4m36-jJglIkBF4zneXFBOowjTxHzj8uzfE16IawopZChQCk7ZDK2IXq73EZTJaPG7cxPMt9Eu7a_OtrGJf35zvg0fpp0aH0_sS4Z751e2zJ5dDvrG7c2LoYbclXrr2B6p9kl75PHxeg5nc2fpqPhLC0BMaYaQNYCOQooBRW6EpBllUQKS9BVVlItJNYItOZFCRJYuzIVy-qSSqzMknfJ_fHuxjffWxOiWjVb79qXitMiF5xJytsWO7ZK34TgTa023q613yug6qBM_StTB2XqpKyF7o6QNcacAVmBgBn_A1sTZtI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Agrawal, Navneet</creator><creator>Cavalcante, Renato Luis Garrido</creator><creator>Yukawa, Masahiro</creator><creator>Stanczak, Slawomir</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3829-4668</orcidid><orcidid>https://orcid.org/0000-0002-8216-1064</orcidid><orcidid>https://orcid.org/0000-0002-8826-7580</orcidid><orcidid>https://orcid.org/0000-0002-3709-275X</orcidid></search><sort><creationdate>2024</creationdate><title>Distributed Convex Optimization "Over-the-Air" in Dynamic Environments</title><author>Agrawal, Navneet ; Cavalcante, Renato Luis Garrido ; Yukawa, Masahiro ; Stanczak, Slawomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-a119f473741c404ad4155d9701b1ad5c0a497f710f38c1912970ed25fc097deb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Communications systems</topic><topic>Convergence</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>decentralized</topic><topic>Distributed algorithms</topic><topic>distributed optimization</topic><topic>Energy consumption</topic><topic>Energy conversion efficiency</topic><topic>Fields (mathematics)</topic><topic>Optimization</topic><topic>over-the-air function computation</topic><topic>Perturbation methods</topic><topic>Protocols</topic><topic>superiorization</topic><topic>time-varying network</topic><topic>Topology</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agrawal, Navneet</creatorcontrib><creatorcontrib>Cavalcante, Renato Luis Garrido</creatorcontrib><creatorcontrib>Yukawa, Masahiro</creatorcontrib><creatorcontrib>Stanczak, Slawomir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on signal and information processing over networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agrawal, Navneet</au><au>Cavalcante, Renato Luis Garrido</au><au>Yukawa, Masahiro</au><au>Stanczak, Slawomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Convex Optimization "Over-the-Air" in Dynamic Environments</atitle><jtitle>IEEE transactions on signal and information processing over networks</jtitle><stitle>TSIPN</stitle><date>2024</date><risdate>2024</risdate><volume>10</volume><spage>610</spage><epage>625</epage><pages>610-625</pages><issn>2373-776X</issn><eissn>2373-776X</eissn><eissn>2373-7778</eissn><coden>ITSIBW</coden><abstract>This paper presents a decentralized algorithm for solving distributed convex optimization problems in dynamic networks with time-varying objectives. The unique feature of the algorithm lies in its ability to accommodate a wide range of communication systems, including previously unsupported ones, by abstractly modeling the information exchange in the network. Specifically, it supports a novel communication protocol based on the "over-the-air" function computation (OTA-C) technology, that is designed for an efficient and truly decentralized implementation of the consensus step of the algorithm. Unlike existing OTA-C protocols, the proposed protocol does not require the knowledge of network graph structure or channel state information, making it particularly suitable for decentralized implementation over ultra-dense wireless networks with time-varying topologies and fading channels. Furthermore, the proposed algorithm synergizes with the "superiorization" methodology, allowing the development of new distributed algorithms with enhanced performance for the intended applications. The theoretical analysis establishes sufficient conditions for almost sure convergence of the algorithm to a common time-invariant solution for all agents, assuming such a solution exists. Our algorithm is applied to a real-world distributed random field estimation problem, showcasing its efficacy in terms of convergence speed, scalability, and spectral efficiency. Furthermore, we present a superiorized version of our algorithm that achieves faster convergence with significantly reduced energy consumption compared to the unsuperiorized algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSIPN.2024.3423668</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3829-4668</orcidid><orcidid>https://orcid.org/0000-0002-8216-1064</orcidid><orcidid>https://orcid.org/0000-0002-8826-7580</orcidid><orcidid>https://orcid.org/0000-0002-3709-275X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2373-776X
ispartof IEEE transactions on signal and information processing over networks, 2024, Vol.10, p.610-625
issn 2373-776X
2373-776X
2373-7778
language eng
recordid cdi_crossref_primary_10_1109_TSIPN_2024_3423668
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Algorithms
Communications systems
Convergence
Convex analysis
Convexity
decentralized
Distributed algorithms
distributed optimization
Energy consumption
Energy conversion efficiency
Fields (mathematics)
Optimization
over-the-air function computation
Perturbation methods
Protocols
superiorization
time-varying network
Topology
Wireless networks
Wireless sensor networks
title Distributed Convex Optimization "Over-the-Air" in Dynamic Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Convex%20Optimization%20%22Over-the-Air%22%20in%20Dynamic%20Environments&rft.jtitle=IEEE%20transactions%20on%20signal%20and%20information%20processing%20over%20networks&rft.au=Agrawal,%20Navneet&rft.date=2024&rft.volume=10&rft.spage=610&rft.epage=625&rft.pages=610-625&rft.issn=2373-776X&rft.eissn=2373-776X&rft.coden=ITSIBW&rft_id=info:doi/10.1109/TSIPN.2024.3423668&rft_dat=%3Cproquest_RIE%3E3086432903%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086432903&rft_id=info:pmid/&rft_ieee_id=10587175&rfr_iscdi=true