Graph Topology Inference With Derivative-Reproducing Property in RKHS: Algorithm and Convergence Analysis
In many areas such as computational biology, finance or social sciences, knowledge of an underlying graph explaining the interactions between agents is of paramount importance but still challenging. Considering that these interactions may be based on nonlinear relationships adds further complexity t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal and information processing over networks 2022-01, Vol.8, p.78-91 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | |
container_start_page | 78 |
container_title | IEEE transactions on signal and information processing over networks |
container_volume | 8 |
creator | Moscu, Mircea Borsoi, Ricardo Richard, Cedric Bermudez, Jose-Carlos |
description | In many areas such as computational biology, finance or social sciences, knowledge of an underlying graph explaining the interactions between agents is of paramount importance but still challenging. Considering that these interactions may be based on nonlinear relationships adds further complexity to the topology inference problem. Among the latest methods that respond to this need is a topology inference one proposed by the authors, which estimates a possibly directed adjacency matrix in an online manner. Contrasting with previous approaches based on linear models, the considered model is able to explain nonlinear interactions between the agents in a network. The novelty in the considered method is the use of a derivative-reproducing property to enforce network sparsity, while reproducing kernels are used to model the nonlinear interactions. The aim of this paper is to present a thorough convergence analysis of this method. The analysis is proven to be sane both in the mean and mean square sense. In addition, stability conditions are devised to ensure the convergence of the analyzed method. |
doi_str_mv | 10.1109/TSIPN.2022.3146050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSIPN_2022_3146050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9693169</ieee_id><sourcerecordid>2626972983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-cdb2c29ece0a25c496cd03d78a86e5061fedf1f5a8624c762536ce06acc0c1d3</originalsourceid><addsrcrecordid>eNpNkc1OAjEUhSdGEwnyArpp4srFYH9mWuqOoAKRKFES3TW1cwdKhunYDiS8vUWMcdX25jvnnuYkySXBfUKwvF28TefPfYop7TOScZzjk6RDmWCpEPzj9N_9POmFsMYYk1xkQspOYsdeNyu0cI2r3HKPpnUJHmoD6N22K3QP3u50a3eQvkLjXbE1tl6iuXcN-HaPbI1enyZvd2hYLZ2Pig3SdYFGrt6BX_74DGtd7YMNF8lZqasAvd-zmyweHxajSTp7GU9Hw1lqYso2NcUnNVSCAaxpbjLJTYFZIQZ6wCHHnJRQlKTM45NmRnCaMx5Zro3BhhSsm9wcbVe6Uo23G-33ymmrJsOZOswwY5lghO9IZK-PbPzZ1xZCq9Zu62PeoCinXAoqByxS9EgZ70LwUP7ZEqwOBaifAtShAPVbQBRdHUUWAP4Eksu4WbJvoDSCTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626972983</pqid></control><display><type>article</type><title>Graph Topology Inference With Derivative-Reproducing Property in RKHS: Algorithm and Convergence Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Moscu, Mircea ; Borsoi, Ricardo ; Richard, Cedric ; Bermudez, Jose-Carlos</creator><creatorcontrib>Moscu, Mircea ; Borsoi, Ricardo ; Richard, Cedric ; Bermudez, Jose-Carlos</creatorcontrib><description>In many areas such as computational biology, finance or social sciences, knowledge of an underlying graph explaining the interactions between agents is of paramount importance but still challenging. Considering that these interactions may be based on nonlinear relationships adds further complexity to the topology inference problem. Among the latest methods that respond to this need is a topology inference one proposed by the authors, which estimates a possibly directed adjacency matrix in an online manner. Contrasting with previous approaches based on linear models, the considered model is able to explain nonlinear interactions between the agents in a network. The novelty in the considered method is the use of a derivative-reproducing property to enforce network sparsity, while reproducing kernels are used to model the nonlinear interactions. The aim of this paper is to present a thorough convergence analysis of this method. The analysis is proven to be sane both in the mean and mean square sense. In addition, stability conditions are devised to ensure the convergence of the analyzed method.</description><identifier>ISSN: 2373-776X</identifier><identifier>EISSN: 2373-776X</identifier><identifier>EISSN: 2373-7778</identifier><identifier>DOI: 10.1109/TSIPN.2022.3146050</identifier><identifier>CODEN: ITSIBW</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Brain modeling ; Computer Science ; Convergence ; Convergence analysis ; Engineering Sciences ; Inference ; Inference algorithms ; Kernel ; kernel least mean squares ; Mathematical analysis ; Network topology ; nonlinear topology inference ; partial derivative sparsity ; Signal and Image processing ; Signal processing algorithms ; Stability analysis ; Topology</subject><ispartof>IEEE transactions on signal and information processing over networks, 2022-01, Vol.8, p.78-91</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-cdb2c29ece0a25c496cd03d78a86e5061fedf1f5a8624c762536ce06acc0c1d3</citedby><cites>FETCH-LOGICAL-c373t-cdb2c29ece0a25c496cd03d78a86e5061fedf1f5a8624c762536ce06acc0c1d3</cites><orcidid>0000-0003-2890-141X ; 0000-0002-6712-939X ; 0000-0002-6930-6185 ; 0000-0001-6036-2124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9693169$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9693169$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03347316$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Moscu, Mircea</creatorcontrib><creatorcontrib>Borsoi, Ricardo</creatorcontrib><creatorcontrib>Richard, Cedric</creatorcontrib><creatorcontrib>Bermudez, Jose-Carlos</creatorcontrib><title>Graph Topology Inference With Derivative-Reproducing Property in RKHS: Algorithm and Convergence Analysis</title><title>IEEE transactions on signal and information processing over networks</title><addtitle>TSIPN</addtitle><description>In many areas such as computational biology, finance or social sciences, knowledge of an underlying graph explaining the interactions between agents is of paramount importance but still challenging. Considering that these interactions may be based on nonlinear relationships adds further complexity to the topology inference problem. Among the latest methods that respond to this need is a topology inference one proposed by the authors, which estimates a possibly directed adjacency matrix in an online manner. Contrasting with previous approaches based on linear models, the considered model is able to explain nonlinear interactions between the agents in a network. The novelty in the considered method is the use of a derivative-reproducing property to enforce network sparsity, while reproducing kernels are used to model the nonlinear interactions. The aim of this paper is to present a thorough convergence analysis of this method. The analysis is proven to be sane both in the mean and mean square sense. In addition, stability conditions are devised to ensure the convergence of the analyzed method.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain modeling</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Convergence analysis</subject><subject>Engineering Sciences</subject><subject>Inference</subject><subject>Inference algorithms</subject><subject>Kernel</subject><subject>kernel least mean squares</subject><subject>Mathematical analysis</subject><subject>Network topology</subject><subject>nonlinear topology inference</subject><subject>partial derivative sparsity</subject><subject>Signal and Image processing</subject><subject>Signal processing algorithms</subject><subject>Stability analysis</subject><subject>Topology</subject><issn>2373-776X</issn><issn>2373-776X</issn><issn>2373-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkc1OAjEUhSdGEwnyArpp4srFYH9mWuqOoAKRKFES3TW1cwdKhunYDiS8vUWMcdX25jvnnuYkySXBfUKwvF28TefPfYop7TOScZzjk6RDmWCpEPzj9N_9POmFsMYYk1xkQspOYsdeNyu0cI2r3HKPpnUJHmoD6N22K3QP3u50a3eQvkLjXbE1tl6iuXcN-HaPbI1enyZvd2hYLZ2Pig3SdYFGrt6BX_74DGtd7YMNF8lZqasAvd-zmyweHxajSTp7GU9Hw1lqYso2NcUnNVSCAaxpbjLJTYFZIQZ6wCHHnJRQlKTM45NmRnCaMx5Zro3BhhSsm9wcbVe6Uo23G-33ymmrJsOZOswwY5lghO9IZK-PbPzZ1xZCq9Zu62PeoCinXAoqByxS9EgZ70LwUP7ZEqwOBaifAtShAPVbQBRdHUUWAP4Eksu4WbJvoDSCTg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Moscu, Mircea</creator><creator>Borsoi, Ricardo</creator><creator>Richard, Cedric</creator><creator>Bermudez, Jose-Carlos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2890-141X</orcidid><orcidid>https://orcid.org/0000-0002-6712-939X</orcidid><orcidid>https://orcid.org/0000-0002-6930-6185</orcidid><orcidid>https://orcid.org/0000-0001-6036-2124</orcidid></search><sort><creationdate>20220101</creationdate><title>Graph Topology Inference With Derivative-Reproducing Property in RKHS: Algorithm and Convergence Analysis</title><author>Moscu, Mircea ; Borsoi, Ricardo ; Richard, Cedric ; Bermudez, Jose-Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-cdb2c29ece0a25c496cd03d78a86e5061fedf1f5a8624c762536ce06acc0c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain modeling</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Convergence analysis</topic><topic>Engineering Sciences</topic><topic>Inference</topic><topic>Inference algorithms</topic><topic>Kernel</topic><topic>kernel least mean squares</topic><topic>Mathematical analysis</topic><topic>Network topology</topic><topic>nonlinear topology inference</topic><topic>partial derivative sparsity</topic><topic>Signal and Image processing</topic><topic>Signal processing algorithms</topic><topic>Stability analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moscu, Mircea</creatorcontrib><creatorcontrib>Borsoi, Ricardo</creatorcontrib><creatorcontrib>Richard, Cedric</creatorcontrib><creatorcontrib>Bermudez, Jose-Carlos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on signal and information processing over networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moscu, Mircea</au><au>Borsoi, Ricardo</au><au>Richard, Cedric</au><au>Bermudez, Jose-Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Topology Inference With Derivative-Reproducing Property in RKHS: Algorithm and Convergence Analysis</atitle><jtitle>IEEE transactions on signal and information processing over networks</jtitle><stitle>TSIPN</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>8</volume><spage>78</spage><epage>91</epage><pages>78-91</pages><issn>2373-776X</issn><eissn>2373-776X</eissn><eissn>2373-7778</eissn><coden>ITSIBW</coden><abstract>In many areas such as computational biology, finance or social sciences, knowledge of an underlying graph explaining the interactions between agents is of paramount importance but still challenging. Considering that these interactions may be based on nonlinear relationships adds further complexity to the topology inference problem. Among the latest methods that respond to this need is a topology inference one proposed by the authors, which estimates a possibly directed adjacency matrix in an online manner. Contrasting with previous approaches based on linear models, the considered model is able to explain nonlinear interactions between the agents in a network. The novelty in the considered method is the use of a derivative-reproducing property to enforce network sparsity, while reproducing kernels are used to model the nonlinear interactions. The aim of this paper is to present a thorough convergence analysis of this method. The analysis is proven to be sane both in the mean and mean square sense. In addition, stability conditions are devised to ensure the convergence of the analyzed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSIPN.2022.3146050</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2890-141X</orcidid><orcidid>https://orcid.org/0000-0002-6712-939X</orcidid><orcidid>https://orcid.org/0000-0002-6930-6185</orcidid><orcidid>https://orcid.org/0000-0001-6036-2124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2373-776X |
ispartof | IEEE transactions on signal and information processing over networks, 2022-01, Vol.8, p.78-91 |
issn | 2373-776X 2373-776X 2373-7778 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSIPN_2022_3146050 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial Intelligence Brain modeling Computer Science Convergence Convergence analysis Engineering Sciences Inference Inference algorithms Kernel kernel least mean squares Mathematical analysis Network topology nonlinear topology inference partial derivative sparsity Signal and Image processing Signal processing algorithms Stability analysis Topology |
title | Graph Topology Inference With Derivative-Reproducing Property in RKHS: Algorithm and Convergence Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Topology%20Inference%20With%20Derivative-Reproducing%20Property%20in%20RKHS:%20Algorithm%20and%20Convergence%20Analysis&rft.jtitle=IEEE%20transactions%20on%20signal%20and%20information%20processing%20over%20networks&rft.au=Moscu,%20Mircea&rft.date=2022-01-01&rft.volume=8&rft.spage=78&rft.epage=91&rft.pages=78-91&rft.issn=2373-776X&rft.eissn=2373-776X&rft.coden=ITSIBW&rft_id=info:doi/10.1109/TSIPN.2022.3146050&rft_dat=%3Cproquest_RIE%3E2626972983%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626972983&rft_id=info:pmid/&rft_ieee_id=9693169&rfr_iscdi=true |