Federated Tobit Kalman Filtering Fusion With Dead-Zone-Like Censoring and Dynamical Bias Under the Round-Robin Protocol

This paper is concerned with the multi-sensor filtering fusion problem subject to stochastic uncertainties under the Round-Robin protocol (RRP). The uncertainties originate from three sources, namely, censored observations, dynamical biases and additive white noises. To reflect the dead-zone-like ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal and information processing over networks 2021, Vol.7, p.1-16
Hauptverfasser: Geng, Hang, Wang, Zidong, Alsaadi, Fuad E., Alharbi, Khalid H., Cheng, Yuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 1
container_title IEEE transactions on signal and information processing over networks
container_volume 7
creator Geng, Hang
Wang, Zidong
Alsaadi, Fuad E.
Alharbi, Khalid H.
Cheng, Yuhua
description This paper is concerned with the multi-sensor filtering fusion problem subject to stochastic uncertainties under the Round-Robin protocol (RRP). The uncertainties originate from three sources, namely, censored observations, dynamical biases and additive white noises. To reflect the dead-zone-like censoring phenomenon, the measurement observation is described by the Tobit model where the censored region is constrained by prescribed left- and right-censoring thresholds. The bias is modeled as a dynamical stochastic process driven by a white noise in order to reflect the random behavior of possible ambient disturbances. The RRP is employed to decide the transmission sequence of sensors so as to alleviate undesirable data collisions. The filtering fusion is conducted via two stages: 1) the sensor observations arriving at its corresponding estimator are first leveraged to generate a local estimate, and 2) the local estimates are then gathered together at the fusion center in order to form the fused estimate. The local estimator implements a Tobit Kalman filtering algorithm on the basis of an enhanced Tobit regression model, whilst the fusion center realizes a filtering fusion algorithm in accordance with the well-known federated fusion principle. The validity of the fusion approach is finally shown via a simulation example.
doi_str_mv 10.1109/TSIPN.2020.3044904
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSIPN_2020_3044904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9295351</ieee_id><sourcerecordid>2478139523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-5c07ecc7bda5d1472f2244fdd0e3968214ebbd0c9f57f9b4046b6f0188fc413f3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhQdRsNT-Ad0EXE_Na5rJUlurYlHRFsXNkEluNDpNNJki_nunD1zdszjfufBl2THBQ0KwPJs_3TzcDSmmeMgw5xLzvaxHmWC5EKLc_8-jl8NskNIHxpgUggspe9nPFAxE1YJB81C7Ft2qZqk8mrqmhej8G5qukgsePbv2HU1Amfw1eMhn7hPQGHwKm5LyBk1-vVo6rRp04VRCC98No_Yd0GNYeZM_dvMePcTQBh2ao-zAqibBYHf72WJ6OR9f57P7q5vx-SzXjMk2LzQWoLWojSoM4YJaSjm3xmBgclRSwqGuDdbSFsLKmmM-qkcWk7K0mhNmWT873e5-xfC9gtRWH2EVffeyolyUhMmCsq5Fty0dQ0oRbPUV3VLF34rgau242jiu1o6rneMOOtlCDgD-AUllwQrC_gCJ3XiJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478139523</pqid></control><display><type>article</type><title>Federated Tobit Kalman Filtering Fusion With Dead-Zone-Like Censoring and Dynamical Bias Under the Round-Robin Protocol</title><source>IEEE Electronic Library (IEL)</source><creator>Geng, Hang ; Wang, Zidong ; Alsaadi, Fuad E. ; Alharbi, Khalid H. ; Cheng, Yuhua</creator><creatorcontrib>Geng, Hang ; Wang, Zidong ; Alsaadi, Fuad E. ; Alharbi, Khalid H. ; Cheng, Yuhua</creatorcontrib><description>This paper is concerned with the multi-sensor filtering fusion problem subject to stochastic uncertainties under the Round-Robin protocol (RRP). The uncertainties originate from three sources, namely, censored observations, dynamical biases and additive white noises. To reflect the dead-zone-like censoring phenomenon, the measurement observation is described by the Tobit model where the censored region is constrained by prescribed left- and right-censoring thresholds. The bias is modeled as a dynamical stochastic process driven by a white noise in order to reflect the random behavior of possible ambient disturbances. The RRP is employed to decide the transmission sequence of sensors so as to alleviate undesirable data collisions. The filtering fusion is conducted via two stages: 1) the sensor observations arriving at its corresponding estimator are first leveraged to generate a local estimate, and 2) the local estimates are then gathered together at the fusion center in order to form the fused estimate. The local estimator implements a Tobit Kalman filtering algorithm on the basis of an enhanced Tobit regression model, whilst the fusion center realizes a filtering fusion algorithm in accordance with the well-known federated fusion principle. The validity of the fusion approach is finally shown via a simulation example.</description><identifier>ISSN: 2373-776X</identifier><identifier>EISSN: 2373-7778</identifier><identifier>DOI: 10.1109/TSIPN.2020.3044904</identifier><identifier>CODEN: ITSIBW</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Algorithms ; Bias ; Censored observations ; Design of experiments ; dynamical bias ; federated fusion ; Kalman filters ; Protocols ; Regression models ; round-robin protocol ; Sensor fusion ; Sensors ; Stochastic processes ; tobit kalman filter ; Uncertainty ; White noise</subject><ispartof>IEEE transactions on signal and information processing over networks, 2021, Vol.7, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-5c07ecc7bda5d1472f2244fdd0e3968214ebbd0c9f57f9b4046b6f0188fc413f3</citedby><cites>FETCH-LOGICAL-c339t-5c07ecc7bda5d1472f2244fdd0e3968214ebbd0c9f57f9b4046b6f0188fc413f3</cites><orcidid>0000-0002-5580-2006 ; 0000-0001-5491-6071 ; 0000-0001-6420-3948 ; 0000-0002-9576-7401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9295351$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9295351$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Geng, Hang</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><creatorcontrib>Alsaadi, Fuad E.</creatorcontrib><creatorcontrib>Alharbi, Khalid H.</creatorcontrib><creatorcontrib>Cheng, Yuhua</creatorcontrib><title>Federated Tobit Kalman Filtering Fusion With Dead-Zone-Like Censoring and Dynamical Bias Under the Round-Robin Protocol</title><title>IEEE transactions on signal and information processing over networks</title><addtitle>TSIPN</addtitle><description>This paper is concerned with the multi-sensor filtering fusion problem subject to stochastic uncertainties under the Round-Robin protocol (RRP). The uncertainties originate from three sources, namely, censored observations, dynamical biases and additive white noises. To reflect the dead-zone-like censoring phenomenon, the measurement observation is described by the Tobit model where the censored region is constrained by prescribed left- and right-censoring thresholds. The bias is modeled as a dynamical stochastic process driven by a white noise in order to reflect the random behavior of possible ambient disturbances. The RRP is employed to decide the transmission sequence of sensors so as to alleviate undesirable data collisions. The filtering fusion is conducted via two stages: 1) the sensor observations arriving at its corresponding estimator are first leveraged to generate a local estimate, and 2) the local estimates are then gathered together at the fusion center in order to form the fused estimate. The local estimator implements a Tobit Kalman filtering algorithm on the basis of an enhanced Tobit regression model, whilst the fusion center realizes a filtering fusion algorithm in accordance with the well-known federated fusion principle. The validity of the fusion approach is finally shown via a simulation example.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Censored observations</subject><subject>Design of experiments</subject><subject>dynamical bias</subject><subject>federated fusion</subject><subject>Kalman filters</subject><subject>Protocols</subject><subject>Regression models</subject><subject>round-robin protocol</subject><subject>Sensor fusion</subject><subject>Sensors</subject><subject>Stochastic processes</subject><subject>tobit kalman filter</subject><subject>Uncertainty</subject><subject>White noise</subject><issn>2373-776X</issn><issn>2373-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhQdRsNT-Ad0EXE_Na5rJUlurYlHRFsXNkEluNDpNNJki_nunD1zdszjfufBl2THBQ0KwPJs_3TzcDSmmeMgw5xLzvaxHmWC5EKLc_8-jl8NskNIHxpgUggspe9nPFAxE1YJB81C7Ft2qZqk8mrqmhej8G5qukgsePbv2HU1Amfw1eMhn7hPQGHwKm5LyBk1-vVo6rRp04VRCC98No_Yd0GNYeZM_dvMePcTQBh2ao-zAqibBYHf72WJ6OR9f57P7q5vx-SzXjMk2LzQWoLWojSoM4YJaSjm3xmBgclRSwqGuDdbSFsLKmmM-qkcWk7K0mhNmWT873e5-xfC9gtRWH2EVffeyolyUhMmCsq5Fty0dQ0oRbPUV3VLF34rgau242jiu1o6rneMOOtlCDgD-AUllwQrC_gCJ3XiJ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Geng, Hang</creator><creator>Wang, Zidong</creator><creator>Alsaadi, Fuad E.</creator><creator>Alharbi, Khalid H.</creator><creator>Cheng, Yuhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5580-2006</orcidid><orcidid>https://orcid.org/0000-0001-5491-6071</orcidid><orcidid>https://orcid.org/0000-0001-6420-3948</orcidid><orcidid>https://orcid.org/0000-0002-9576-7401</orcidid></search><sort><creationdate>2021</creationdate><title>Federated Tobit Kalman Filtering Fusion With Dead-Zone-Like Censoring and Dynamical Bias Under the Round-Robin Protocol</title><author>Geng, Hang ; Wang, Zidong ; Alsaadi, Fuad E. ; Alharbi, Khalid H. ; Cheng, Yuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-5c07ecc7bda5d1472f2244fdd0e3968214ebbd0c9f57f9b4046b6f0188fc413f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Censored observations</topic><topic>Design of experiments</topic><topic>dynamical bias</topic><topic>federated fusion</topic><topic>Kalman filters</topic><topic>Protocols</topic><topic>Regression models</topic><topic>round-robin protocol</topic><topic>Sensor fusion</topic><topic>Sensors</topic><topic>Stochastic processes</topic><topic>tobit kalman filter</topic><topic>Uncertainty</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Hang</creatorcontrib><creatorcontrib>Wang, Zidong</creatorcontrib><creatorcontrib>Alsaadi, Fuad E.</creatorcontrib><creatorcontrib>Alharbi, Khalid H.</creatorcontrib><creatorcontrib>Cheng, Yuhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on signal and information processing over networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Geng, Hang</au><au>Wang, Zidong</au><au>Alsaadi, Fuad E.</au><au>Alharbi, Khalid H.</au><au>Cheng, Yuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Tobit Kalman Filtering Fusion With Dead-Zone-Like Censoring and Dynamical Bias Under the Round-Robin Protocol</atitle><jtitle>IEEE transactions on signal and information processing over networks</jtitle><stitle>TSIPN</stitle><date>2021</date><risdate>2021</risdate><volume>7</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>2373-776X</issn><eissn>2373-7778</eissn><coden>ITSIBW</coden><abstract>This paper is concerned with the multi-sensor filtering fusion problem subject to stochastic uncertainties under the Round-Robin protocol (RRP). The uncertainties originate from three sources, namely, censored observations, dynamical biases and additive white noises. To reflect the dead-zone-like censoring phenomenon, the measurement observation is described by the Tobit model where the censored region is constrained by prescribed left- and right-censoring thresholds. The bias is modeled as a dynamical stochastic process driven by a white noise in order to reflect the random behavior of possible ambient disturbances. The RRP is employed to decide the transmission sequence of sensors so as to alleviate undesirable data collisions. The filtering fusion is conducted via two stages: 1) the sensor observations arriving at its corresponding estimator are first leveraged to generate a local estimate, and 2) the local estimates are then gathered together at the fusion center in order to form the fused estimate. The local estimator implements a Tobit Kalman filtering algorithm on the basis of an enhanced Tobit regression model, whilst the fusion center realizes a filtering fusion algorithm in accordance with the well-known federated fusion principle. The validity of the fusion approach is finally shown via a simulation example.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSIPN.2020.3044904</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5580-2006</orcidid><orcidid>https://orcid.org/0000-0001-5491-6071</orcidid><orcidid>https://orcid.org/0000-0001-6420-3948</orcidid><orcidid>https://orcid.org/0000-0002-9576-7401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2373-776X
ispartof IEEE transactions on signal and information processing over networks, 2021, Vol.7, p.1-16
issn 2373-776X
2373-7778
language eng
recordid cdi_crossref_primary_10_1109_TSIPN_2020_3044904
source IEEE Electronic Library (IEL)
subjects Acceleration
Algorithms
Bias
Censored observations
Design of experiments
dynamical bias
federated fusion
Kalman filters
Protocols
Regression models
round-robin protocol
Sensor fusion
Sensors
Stochastic processes
tobit kalman filter
Uncertainty
White noise
title Federated Tobit Kalman Filtering Fusion With Dead-Zone-Like Censoring and Dynamical Bias Under the Round-Robin Protocol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Tobit%20Kalman%20Filtering%20Fusion%20With%20Dead-Zone-Like%20Censoring%20and%20Dynamical%20Bias%20Under%20the%20Round-Robin%20Protocol&rft.jtitle=IEEE%20transactions%20on%20signal%20and%20information%20processing%20over%20networks&rft.au=Geng,%20Hang&rft.date=2021&rft.volume=7&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=2373-776X&rft.eissn=2373-7778&rft.coden=ITSIBW&rft_id=info:doi/10.1109/TSIPN.2020.3044904&rft_dat=%3Cproquest_RIE%3E2478139523%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478139523&rft_id=info:pmid/&rft_ieee_id=9295351&rfr_iscdi=true