Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring
Distributed sensor networks can be used as passive seismic sensors to image and monitor subsurface and underground activities. Passive seismic surface-wave imaging adopts background ambient sounds from a far-field energy source. Because high frequency components decay a lot between the neighboring s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal and information processing over networks 2020, Vol.6, p.241-250 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | |
container_start_page | 241 |
container_title | IEEE transactions on signal and information processing over networks |
container_volume | 6 |
creator | Li, Fangyu Valero, Maria Cheng, Yifang Bai, Tong Song, WenZhan |
description | Distributed sensor networks can be used as passive seismic sensors to image and monitor subsurface and underground activities. Passive seismic surface-wave imaging adopts background ambient sounds from a far-field energy source. Because high frequency components decay a lot between the neighboring stations, conventional sparse sensor networks cannot image small-scale and shallow objects. In this article, we propose to use local seismic spatial autocorrelation coefficients, obtained by the combinations of independent dense sensor network measurements and pre-processed readings of its neighbor(s), to perform real-time collaborative imaging of the shallow subsurface objects. First, we derive the high-frequency spectral coefficient based shallow subsurface imaging method. Then, we apply the proposed approach to image a shallowly buried pipeline and obtain promising results. Furthermore, based on a time-lapse manner, the water leakage from the buried pipeline can also be detected using distributed computations between sensors. Comparisons and analysis of field deployments are made to validate the effectiveness and performance of the proposed method. |
doi_str_mv | 10.1109/TSIPN.2020.2975349 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSIPN_2020_2975349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9005245</ieee_id><sourcerecordid>2379352088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f954640130317de821b91163a32927f0983c89ad68ce48fa8fdc87ead05055a13</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGq_gF4CnrdOks0mOWr9t1Cr0AriJaS7Sd3abmqyS_Hbu7VFPM0w894b5ofQOYEhIaCuZtP8ZTKkQGFIleAsVUeoR5lgiRDZ2_G__hQNYlwCAOEiFUr10PttFZtQzdvGlnhq6-gDnthm68NnxDcm7qYfZrXyWzxt57ENzhQW52uzqOoFNnWJ89oF02W0RdMGi598XTU-dNszdOLMKtrBofbR6_3dbPSYjJ8f8tH1OCkYU03iFE-zFAgDRkRpJSVzRUjGDKOKCgdKskIqU2aysKl0RrqykMKaEjhwbgjro8t97ib4r9bGRi99G-rupO4eV4xTkLJT0b2qCD7GYJ3ehGptwrcmoHcY9S9GvcOoDxg708XeVFlr_wwKgNOUsx-7A27l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379352088</pqid></control><display><type>article</type><title>Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Fangyu ; Valero, Maria ; Cheng, Yifang ; Bai, Tong ; Song, WenZhan</creator><creatorcontrib>Li, Fangyu ; Valero, Maria ; Cheng, Yifang ; Bai, Tong ; Song, WenZhan</creatorcontrib><description>Distributed sensor networks can be used as passive seismic sensors to image and monitor subsurface and underground activities. Passive seismic surface-wave imaging adopts background ambient sounds from a far-field energy source. Because high frequency components decay a lot between the neighboring stations, conventional sparse sensor networks cannot image small-scale and shallow objects. In this article, we propose to use local seismic spatial autocorrelation coefficients, obtained by the combinations of independent dense sensor network measurements and pre-processed readings of its neighbor(s), to perform real-time collaborative imaging of the shallow subsurface objects. First, we derive the high-frequency spectral coefficient based shallow subsurface imaging method. Then, we apply the proposed approach to image a shallowly buried pipeline and obtain promising results. Furthermore, based on a time-lapse manner, the water leakage from the buried pipeline can also be detected using distributed computations between sensors. Comparisons and analysis of field deployments are made to validate the effectiveness and performance of the proposed method.</description><identifier>ISSN: 2373-776X</identifier><identifier>EISSN: 2373-776X</identifier><identifier>EISSN: 2373-7778</identifier><identifier>DOI: 10.1109/TSIPN.2020.2975349</identifier><identifier>CODEN: ITSIBW</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustics ; Buried pipes ; Correlation ; Distributed sensor systems ; Estimation ; Far fields ; high-frequency components ; Imaging ; Information processing ; infrastructure ; Monitoring ; Networks ; Object recognition ; Pipelines ; seismic interferometry ; Sensors ; Shallow subsurface imaging ; Surface waves</subject><ispartof>IEEE transactions on signal and information processing over networks, 2020, Vol.6, p.241-250</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f954640130317de821b91163a32927f0983c89ad68ce48fa8fdc87ead05055a13</citedby><cites>FETCH-LOGICAL-c339t-f954640130317de821b91163a32927f0983c89ad68ce48fa8fdc87ead05055a13</cites><orcidid>0000-0001-8174-1772 ; 0000-0001-8913-9604 ; 0000-0003-2340-3622 ; 0000-0003-3588-075X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9005245$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9005245$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Fangyu</creatorcontrib><creatorcontrib>Valero, Maria</creatorcontrib><creatorcontrib>Cheng, Yifang</creatorcontrib><creatorcontrib>Bai, Tong</creatorcontrib><creatorcontrib>Song, WenZhan</creatorcontrib><title>Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring</title><title>IEEE transactions on signal and information processing over networks</title><addtitle>TSIPN</addtitle><description>Distributed sensor networks can be used as passive seismic sensors to image and monitor subsurface and underground activities. Passive seismic surface-wave imaging adopts background ambient sounds from a far-field energy source. Because high frequency components decay a lot between the neighboring stations, conventional sparse sensor networks cannot image small-scale and shallow objects. In this article, we propose to use local seismic spatial autocorrelation coefficients, obtained by the combinations of independent dense sensor network measurements and pre-processed readings of its neighbor(s), to perform real-time collaborative imaging of the shallow subsurface objects. First, we derive the high-frequency spectral coefficient based shallow subsurface imaging method. Then, we apply the proposed approach to image a shallowly buried pipeline and obtain promising results. Furthermore, based on a time-lapse manner, the water leakage from the buried pipeline can also be detected using distributed computations between sensors. Comparisons and analysis of field deployments are made to validate the effectiveness and performance of the proposed method.</description><subject>Acoustics</subject><subject>Buried pipes</subject><subject>Correlation</subject><subject>Distributed sensor systems</subject><subject>Estimation</subject><subject>Far fields</subject><subject>high-frequency components</subject><subject>Imaging</subject><subject>Information processing</subject><subject>infrastructure</subject><subject>Monitoring</subject><subject>Networks</subject><subject>Object recognition</subject><subject>Pipelines</subject><subject>seismic interferometry</subject><subject>Sensors</subject><subject>Shallow subsurface imaging</subject><subject>Surface waves</subject><issn>2373-776X</issn><issn>2373-776X</issn><issn>2373-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWGq_gF4CnrdOks0mOWr9t1Cr0AriJaS7Sd3abmqyS_Hbu7VFPM0w894b5ofQOYEhIaCuZtP8ZTKkQGFIleAsVUeoR5lgiRDZ2_G__hQNYlwCAOEiFUr10PttFZtQzdvGlnhq6-gDnthm68NnxDcm7qYfZrXyWzxt57ENzhQW52uzqOoFNnWJ89oF02W0RdMGi598XTU-dNszdOLMKtrBofbR6_3dbPSYjJ8f8tH1OCkYU03iFE-zFAgDRkRpJSVzRUjGDKOKCgdKskIqU2aysKl0RrqykMKaEjhwbgjro8t97ib4r9bGRi99G-rupO4eV4xTkLJT0b2qCD7GYJ3ehGptwrcmoHcY9S9GvcOoDxg708XeVFlr_wwKgNOUsx-7A27l</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Fangyu</creator><creator>Valero, Maria</creator><creator>Cheng, Yifang</creator><creator>Bai, Tong</creator><creator>Song, WenZhan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8174-1772</orcidid><orcidid>https://orcid.org/0000-0001-8913-9604</orcidid><orcidid>https://orcid.org/0000-0003-2340-3622</orcidid><orcidid>https://orcid.org/0000-0003-3588-075X</orcidid></search><sort><creationdate>2020</creationdate><title>Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring</title><author>Li, Fangyu ; Valero, Maria ; Cheng, Yifang ; Bai, Tong ; Song, WenZhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f954640130317de821b91163a32927f0983c89ad68ce48fa8fdc87ead05055a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustics</topic><topic>Buried pipes</topic><topic>Correlation</topic><topic>Distributed sensor systems</topic><topic>Estimation</topic><topic>Far fields</topic><topic>high-frequency components</topic><topic>Imaging</topic><topic>Information processing</topic><topic>infrastructure</topic><topic>Monitoring</topic><topic>Networks</topic><topic>Object recognition</topic><topic>Pipelines</topic><topic>seismic interferometry</topic><topic>Sensors</topic><topic>Shallow subsurface imaging</topic><topic>Surface waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fangyu</creatorcontrib><creatorcontrib>Valero, Maria</creatorcontrib><creatorcontrib>Cheng, Yifang</creatorcontrib><creatorcontrib>Bai, Tong</creatorcontrib><creatorcontrib>Song, WenZhan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on signal and information processing over networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Fangyu</au><au>Valero, Maria</au><au>Cheng, Yifang</au><au>Bai, Tong</au><au>Song, WenZhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring</atitle><jtitle>IEEE transactions on signal and information processing over networks</jtitle><stitle>TSIPN</stitle><date>2020</date><risdate>2020</risdate><volume>6</volume><spage>241</spage><epage>250</epage><pages>241-250</pages><issn>2373-776X</issn><eissn>2373-776X</eissn><eissn>2373-7778</eissn><coden>ITSIBW</coden><abstract>Distributed sensor networks can be used as passive seismic sensors to image and monitor subsurface and underground activities. Passive seismic surface-wave imaging adopts background ambient sounds from a far-field energy source. Because high frequency components decay a lot between the neighboring stations, conventional sparse sensor networks cannot image small-scale and shallow objects. In this article, we propose to use local seismic spatial autocorrelation coefficients, obtained by the combinations of independent dense sensor network measurements and pre-processed readings of its neighbor(s), to perform real-time collaborative imaging of the shallow subsurface objects. First, we derive the high-frequency spectral coefficient based shallow subsurface imaging method. Then, we apply the proposed approach to image a shallowly buried pipeline and obtain promising results. Furthermore, based on a time-lapse manner, the water leakage from the buried pipeline can also be detected using distributed computations between sensors. Comparisons and analysis of field deployments are made to validate the effectiveness and performance of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSIPN.2020.2975349</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8174-1772</orcidid><orcidid>https://orcid.org/0000-0001-8913-9604</orcidid><orcidid>https://orcid.org/0000-0003-2340-3622</orcidid><orcidid>https://orcid.org/0000-0003-3588-075X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2373-776X |
ispartof | IEEE transactions on signal and information processing over networks, 2020, Vol.6, p.241-250 |
issn | 2373-776X 2373-776X 2373-7778 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TSIPN_2020_2975349 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Buried pipes Correlation Distributed sensor systems Estimation Far fields high-frequency components Imaging Information processing infrastructure Monitoring Networks Object recognition Pipelines seismic interferometry Sensors Shallow subsurface imaging Surface waves |
title | Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Sensor%20Networks%20Based%20Shallow%20Subsurface%20Imaging%20and%20Infrastructure%20Monitoring&rft.jtitle=IEEE%20transactions%20on%20signal%20and%20information%20processing%20over%20networks&rft.au=Li,%20Fangyu&rft.date=2020&rft.volume=6&rft.spage=241&rft.epage=250&rft.pages=241-250&rft.issn=2373-776X&rft.eissn=2373-776X&rft.coden=ITSIBW&rft_id=info:doi/10.1109/TSIPN.2020.2975349&rft_dat=%3Cproquest_RIE%3E2379352088%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379352088&rft_id=info:pmid/&rft_ieee_id=9005245&rfr_iscdi=true |