Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring

Distributed sensor networks can be used as passive seismic sensors to image and monitor subsurface and underground activities. Passive seismic surface-wave imaging adopts background ambient sounds from a far-field energy source. Because high frequency components decay a lot between the neighboring s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal and information processing over networks 2020, Vol.6, p.241-250
Hauptverfasser: Li, Fangyu, Valero, Maria, Cheng, Yifang, Bai, Tong, Song, WenZhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue
container_start_page 241
container_title IEEE transactions on signal and information processing over networks
container_volume 6
creator Li, Fangyu
Valero, Maria
Cheng, Yifang
Bai, Tong
Song, WenZhan
description Distributed sensor networks can be used as passive seismic sensors to image and monitor subsurface and underground activities. Passive seismic surface-wave imaging adopts background ambient sounds from a far-field energy source. Because high frequency components decay a lot between the neighboring stations, conventional sparse sensor networks cannot image small-scale and shallow objects. In this article, we propose to use local seismic spatial autocorrelation coefficients, obtained by the combinations of independent dense sensor network measurements and pre-processed readings of its neighbor(s), to perform real-time collaborative imaging of the shallow subsurface objects. First, we derive the high-frequency spectral coefficient based shallow subsurface imaging method. Then, we apply the proposed approach to image a shallowly buried pipeline and obtain promising results. Furthermore, based on a time-lapse manner, the water leakage from the buried pipeline can also be detected using distributed computations between sensors. Comparisons and analysis of field deployments are made to validate the effectiveness and performance of the proposed method.
doi_str_mv 10.1109/TSIPN.2020.2975349
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TSIPN_2020_2975349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9005245</ieee_id><sourcerecordid>2379352088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f954640130317de821b91163a32927f0983c89ad68ce48fa8fdc87ead05055a13</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWGq_gF4CnrdOks0mOWr9t1Cr0AriJaS7Sd3abmqyS_Hbu7VFPM0w894b5ofQOYEhIaCuZtP8ZTKkQGFIleAsVUeoR5lgiRDZ2_G__hQNYlwCAOEiFUr10PttFZtQzdvGlnhq6-gDnthm68NnxDcm7qYfZrXyWzxt57ENzhQW52uzqOoFNnWJ89oF02W0RdMGi598XTU-dNszdOLMKtrBofbR6_3dbPSYjJ8f8tH1OCkYU03iFE-zFAgDRkRpJSVzRUjGDKOKCgdKskIqU2aysKl0RrqykMKaEjhwbgjro8t97ib4r9bGRi99G-rupO4eV4xTkLJT0b2qCD7GYJ3ehGptwrcmoHcY9S9GvcOoDxg708XeVFlr_wwKgNOUsx-7A27l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379352088</pqid></control><display><type>article</type><title>Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Fangyu ; Valero, Maria ; Cheng, Yifang ; Bai, Tong ; Song, WenZhan</creator><creatorcontrib>Li, Fangyu ; Valero, Maria ; Cheng, Yifang ; Bai, Tong ; Song, WenZhan</creatorcontrib><description>Distributed sensor networks can be used as passive seismic sensors to image and monitor subsurface and underground activities. Passive seismic surface-wave imaging adopts background ambient sounds from a far-field energy source. Because high frequency components decay a lot between the neighboring stations, conventional sparse sensor networks cannot image small-scale and shallow objects. In this article, we propose to use local seismic spatial autocorrelation coefficients, obtained by the combinations of independent dense sensor network measurements and pre-processed readings of its neighbor(s), to perform real-time collaborative imaging of the shallow subsurface objects. First, we derive the high-frequency spectral coefficient based shallow subsurface imaging method. Then, we apply the proposed approach to image a shallowly buried pipeline and obtain promising results. Furthermore, based on a time-lapse manner, the water leakage from the buried pipeline can also be detected using distributed computations between sensors. Comparisons and analysis of field deployments are made to validate the effectiveness and performance of the proposed method.</description><identifier>ISSN: 2373-776X</identifier><identifier>EISSN: 2373-776X</identifier><identifier>EISSN: 2373-7778</identifier><identifier>DOI: 10.1109/TSIPN.2020.2975349</identifier><identifier>CODEN: ITSIBW</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustics ; Buried pipes ; Correlation ; Distributed sensor systems ; Estimation ; Far fields ; high-frequency components ; Imaging ; Information processing ; infrastructure ; Monitoring ; Networks ; Object recognition ; Pipelines ; seismic interferometry ; Sensors ; Shallow subsurface imaging ; Surface waves</subject><ispartof>IEEE transactions on signal and information processing over networks, 2020, Vol.6, p.241-250</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f954640130317de821b91163a32927f0983c89ad68ce48fa8fdc87ead05055a13</citedby><cites>FETCH-LOGICAL-c339t-f954640130317de821b91163a32927f0983c89ad68ce48fa8fdc87ead05055a13</cites><orcidid>0000-0001-8174-1772 ; 0000-0001-8913-9604 ; 0000-0003-2340-3622 ; 0000-0003-3588-075X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9005245$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9005245$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Fangyu</creatorcontrib><creatorcontrib>Valero, Maria</creatorcontrib><creatorcontrib>Cheng, Yifang</creatorcontrib><creatorcontrib>Bai, Tong</creatorcontrib><creatorcontrib>Song, WenZhan</creatorcontrib><title>Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring</title><title>IEEE transactions on signal and information processing over networks</title><addtitle>TSIPN</addtitle><description>Distributed sensor networks can be used as passive seismic sensors to image and monitor subsurface and underground activities. Passive seismic surface-wave imaging adopts background ambient sounds from a far-field energy source. Because high frequency components decay a lot between the neighboring stations, conventional sparse sensor networks cannot image small-scale and shallow objects. In this article, we propose to use local seismic spatial autocorrelation coefficients, obtained by the combinations of independent dense sensor network measurements and pre-processed readings of its neighbor(s), to perform real-time collaborative imaging of the shallow subsurface objects. First, we derive the high-frequency spectral coefficient based shallow subsurface imaging method. Then, we apply the proposed approach to image a shallowly buried pipeline and obtain promising results. Furthermore, based on a time-lapse manner, the water leakage from the buried pipeline can also be detected using distributed computations between sensors. Comparisons and analysis of field deployments are made to validate the effectiveness and performance of the proposed method.</description><subject>Acoustics</subject><subject>Buried pipes</subject><subject>Correlation</subject><subject>Distributed sensor systems</subject><subject>Estimation</subject><subject>Far fields</subject><subject>high-frequency components</subject><subject>Imaging</subject><subject>Information processing</subject><subject>infrastructure</subject><subject>Monitoring</subject><subject>Networks</subject><subject>Object recognition</subject><subject>Pipelines</subject><subject>seismic interferometry</subject><subject>Sensors</subject><subject>Shallow subsurface imaging</subject><subject>Surface waves</subject><issn>2373-776X</issn><issn>2373-776X</issn><issn>2373-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWGq_gF4CnrdOks0mOWr9t1Cr0AriJaS7Sd3abmqyS_Hbu7VFPM0w894b5ofQOYEhIaCuZtP8ZTKkQGFIleAsVUeoR5lgiRDZ2_G__hQNYlwCAOEiFUr10PttFZtQzdvGlnhq6-gDnthm68NnxDcm7qYfZrXyWzxt57ENzhQW52uzqOoFNnWJ89oF02W0RdMGi598XTU-dNszdOLMKtrBofbR6_3dbPSYjJ8f8tH1OCkYU03iFE-zFAgDRkRpJSVzRUjGDKOKCgdKskIqU2aysKl0RrqykMKaEjhwbgjro8t97ib4r9bGRi99G-rupO4eV4xTkLJT0b2qCD7GYJ3ehGptwrcmoHcY9S9GvcOoDxg708XeVFlr_wwKgNOUsx-7A27l</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Fangyu</creator><creator>Valero, Maria</creator><creator>Cheng, Yifang</creator><creator>Bai, Tong</creator><creator>Song, WenZhan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8174-1772</orcidid><orcidid>https://orcid.org/0000-0001-8913-9604</orcidid><orcidid>https://orcid.org/0000-0003-2340-3622</orcidid><orcidid>https://orcid.org/0000-0003-3588-075X</orcidid></search><sort><creationdate>2020</creationdate><title>Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring</title><author>Li, Fangyu ; Valero, Maria ; Cheng, Yifang ; Bai, Tong ; Song, WenZhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f954640130317de821b91163a32927f0983c89ad68ce48fa8fdc87ead05055a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustics</topic><topic>Buried pipes</topic><topic>Correlation</topic><topic>Distributed sensor systems</topic><topic>Estimation</topic><topic>Far fields</topic><topic>high-frequency components</topic><topic>Imaging</topic><topic>Information processing</topic><topic>infrastructure</topic><topic>Monitoring</topic><topic>Networks</topic><topic>Object recognition</topic><topic>Pipelines</topic><topic>seismic interferometry</topic><topic>Sensors</topic><topic>Shallow subsurface imaging</topic><topic>Surface waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Fangyu</creatorcontrib><creatorcontrib>Valero, Maria</creatorcontrib><creatorcontrib>Cheng, Yifang</creatorcontrib><creatorcontrib>Bai, Tong</creatorcontrib><creatorcontrib>Song, WenZhan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on signal and information processing over networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Fangyu</au><au>Valero, Maria</au><au>Cheng, Yifang</au><au>Bai, Tong</au><au>Song, WenZhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring</atitle><jtitle>IEEE transactions on signal and information processing over networks</jtitle><stitle>TSIPN</stitle><date>2020</date><risdate>2020</risdate><volume>6</volume><spage>241</spage><epage>250</epage><pages>241-250</pages><issn>2373-776X</issn><eissn>2373-776X</eissn><eissn>2373-7778</eissn><coden>ITSIBW</coden><abstract>Distributed sensor networks can be used as passive seismic sensors to image and monitor subsurface and underground activities. Passive seismic surface-wave imaging adopts background ambient sounds from a far-field energy source. Because high frequency components decay a lot between the neighboring stations, conventional sparse sensor networks cannot image small-scale and shallow objects. In this article, we propose to use local seismic spatial autocorrelation coefficients, obtained by the combinations of independent dense sensor network measurements and pre-processed readings of its neighbor(s), to perform real-time collaborative imaging of the shallow subsurface objects. First, we derive the high-frequency spectral coefficient based shallow subsurface imaging method. Then, we apply the proposed approach to image a shallowly buried pipeline and obtain promising results. Furthermore, based on a time-lapse manner, the water leakage from the buried pipeline can also be detected using distributed computations between sensors. Comparisons and analysis of field deployments are made to validate the effectiveness and performance of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSIPN.2020.2975349</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8174-1772</orcidid><orcidid>https://orcid.org/0000-0001-8913-9604</orcidid><orcidid>https://orcid.org/0000-0003-2340-3622</orcidid><orcidid>https://orcid.org/0000-0003-3588-075X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2373-776X
ispartof IEEE transactions on signal and information processing over networks, 2020, Vol.6, p.241-250
issn 2373-776X
2373-776X
2373-7778
language eng
recordid cdi_crossref_primary_10_1109_TSIPN_2020_2975349
source IEEE Electronic Library (IEL)
subjects Acoustics
Buried pipes
Correlation
Distributed sensor systems
Estimation
Far fields
high-frequency components
Imaging
Information processing
infrastructure
Monitoring
Networks
Object recognition
Pipelines
seismic interferometry
Sensors
Shallow subsurface imaging
Surface waves
title Distributed Sensor Networks Based Shallow Subsurface Imaging and Infrastructure Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Sensor%20Networks%20Based%20Shallow%20Subsurface%20Imaging%20and%20Infrastructure%20Monitoring&rft.jtitle=IEEE%20transactions%20on%20signal%20and%20information%20processing%20over%20networks&rft.au=Li,%20Fangyu&rft.date=2020&rft.volume=6&rft.spage=241&rft.epage=250&rft.pages=241-250&rft.issn=2373-776X&rft.eissn=2373-776X&rft.coden=ITSIBW&rft_id=info:doi/10.1109/TSIPN.2020.2975349&rft_dat=%3Cproquest_RIE%3E2379352088%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379352088&rft_id=info:pmid/&rft_ieee_id=9005245&rfr_iscdi=true